ABETA(1-42) INDUCES IMPAIRMENT OF LTP AND SPIKING RATE IN THE CA1: ROLE OF GLUTAMATE REUPTAKE INHIBITION

E Varga1, G Juhász1, Z Bozsó1, I Fülop1, B Penke1, V Szegedi2

1Department of Medical Chemistry, University of Szeged, Szeged, Hungary.
2Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary

References available: evarga.szte@gmail.com or szegedi.viktor@brc.mta.hu

Early AD is associated with increased probability of seizures. Abeta(1-42) itself was shown to induce hyperexcitability by a still unknown mechanism. Increased excitability induced by Abeta(1-42) may result in a vicious cycle leading to massive neuronal loss:

- 87-fold increase in seizure incidence in early-onset AD patients
- Enhances Abeta(1-42) production by increased neuronal activity
- Membrane depolarization of hippocampal pyramidal cells induced by Abeta(1-42)
- Increased neuronal excitability in central nervous system
- Altered balance of inhibition and excitation
- Increased Ca²⁺ influx
- Excitotoxicity
- Cell death

Both Abeta(1-42) and TBOA induced hyperexcitation is NMDA receptor dependent

We have found that both Abeta(1-42) and TBOA induced a massive enhancement of spiking activity without altering the evoked fEPSPs. This effect was NMDA receptor dependent, since the blocking of NMDA receptors with MK801 prevented hyperexcitation (E, F).

The evoked fEPSPs are synaptic AMPA receptor dependent and the spiking activity requires extrasynaptic NMDA receptor activation

In the presence of CNQX and using Mg²⁺ free ACSF, we have also shown that the evoked fEPSPs are AMPA receptor dependent (G, H), but the spiking activity requires NMDA receptor activation (I).

The goal was to investigate Abeta(1-42) induced impairment of long-term potentiation (LTP) and spiking rate on acute hippocampal slices by Multi-electrode array (MEA) (A): how does Abeta(1-42) induce neuronal hyperexcitability?

Here, we applied Abeta(1-42) and the following compounds onto murine hippocampal slices (n=5-10): a blocker of glutamate uptake (TBOA), an antagonist of NMDA receptor (MK801) and an antagonist of AMPA receptor (CNQX). Spiking activity (B) and field excitatory post synaptic potentials (fEPSPs) (C) were recorded from the CA1. LTP was induced by theta-burst stimulation (TBS), and neuronal discharges were recorded before TBS and 1.5 h after TBS. P *<0.05; **<0.01; ***<0.001.

Abeta(1-42) was synthesized at the Department of Medical Chemistry, University of Szeged, Hungary. The aggregation state of the Abeta(1-42) used was verified by transmission electron microscopy (TEM) (D) and dynamic light scattering studies. On the basis of these methods, we used oligomer Abeta(1-42) for our investigation.

LTP induction prevents Abeta(1-42) or TBOA induced hyperexcitability

Abeta(1-42) induced LTP damage and hyperexcitation were mimicked by the excitatory amino-acid transporters (EAATs) inhibitor TBOA. Block of EAATs leads to increased glutamate at the synaptic cleft and subsequent spillover and activation of extro- or perisynaptic NR2B-enriched NMDARs, which play a major role in LTP induction and cell death pathway activation (O).

Notably, inducing LTP prevents the hyperexcitiation caused by overspill glutamate, most probably by relocating extrasynaptic NMDA receptors to the synaptic compartment (P).

We conclude that oligomer Abeta(1-42) disturbs synaptic plasticity by altering glutamate recycling at the synapse.