<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>Acetylation, 186, 193, 195, 218</td>
</tr>
<tr>
<td>Acylation and diazonium coupling in protein chemistry, 203 et seq.</td>
</tr>
<tr>
<td>adsorption, 237</td>
</tr>
<tr>
<td>alternative diazonium compounds, 221</td>
</tr>
<tr>
<td>applications to cytochemistry, 208</td>
</tr>
<tr>
<td>assessment of results to date, 240</td>
</tr>
<tr>
<td>pattern of distribution in tissues, 240</td>
</tr>
<tr>
<td>quantitative results, 247</td>
</tr>
<tr>
<td>interpretations, 210, 250</td>
</tr>
<tr>
<td>Beer's Law, 239</td>
</tr>
<tr>
<td>benzoylation-diazonium method, 203 et seq.</td>
</tr>
<tr>
<td>critique of the method, 236</td>
</tr>
<tr>
<td>nature of the cytochemical reaction, 236</td>
</tr>
<tr>
<td>the analytical procedures, 238</td>
</tr>
<tr>
<td>cytochemical measurements, 239</td>
</tr>
<tr>
<td>fixation aspects, 239</td>
</tr>
<tr>
<td>distributional error, 239</td>
</tr>
<tr>
<td>blocking reaction, effect of, 209</td>
</tr>
<tr>
<td>reaction with other blocking agents, 218</td>
</tr>
<tr>
<td>effect of variables, 229</td>
</tr>
<tr>
<td>fixation aspects, 239</td>
</tr>
<tr>
<td>freeze dry techniques, 217, 218, 226, 239, 254</td>
</tr>
<tr>
<td>heat treatment, 237, 280</td>
</tr>
<tr>
<td>instrumentation and problems of measurement, 222</td>
</tr>
<tr>
<td>microspectrometry, 222</td>
</tr>
<tr>
<td>mounting requirements, 224</td>
</tr>
<tr>
<td>specimen requirements, 223</td>
</tr>
<tr>
<td>cut nuclei in tissue sections, 223</td>
</tr>
<tr>
<td>stain in overlying, underlying or adjacent regions, 223</td>
</tr>
<tr>
<td>interpretation, 210, 250</td>
</tr>
<tr>
<td>procedures for the establishment of the chemical basis of the cytochemical reaction, 232</td>
</tr>
<tr>
<td>reaction of nuclei in bulk, 232</td>
</tr>
<tr>
<td>fractionation of reacted nuclei, 233</td>
</tr>
<tr>
<td>hydrolysis of the Azo-dye-linked protein, 234</td>
</tr>
<tr>
<td>fractionation and identification, 234</td>
</tr>
<tr>
<td>reaction products—spectral characteristics, 211, 239</td>
</tr>
<tr>
<td>reagents, 252</td>
</tr>
<tr>
<td>relation to other cytochemical methods, 213, 271, 280</td>
</tr>
<tr>
<td>reproducibility, 269</td>
</tr>
<tr>
<td>stabilized tetrazotate, preparation and standardization, 252</td>
</tr>
<tr>
<td>standard procedures, 226</td>
</tr>
<tr>
<td>freeze drying, 226</td>
</tr>
<tr>
<td>specimen pre-treatment, 227</td>
</tr>
<tr>
<td>reaction method, 227</td>
</tr>
<tr>
<td>micro-spectrophotometric method, 228, 230</td>
</tr>
<tr>
<td>theory of the methods, 204</td>
</tr>
<tr>
<td>predicted reactivities, 204</td>
</tr>
<tr>
<td>cytochemistry of the benzoylation-diazonium method, 208</td>
</tr>
<tr>
<td>relation to other cytochemical methods, 213, 271</td>
</tr>
<tr>
<td>spectral characteristics of the reaction product, 211, 239</td>
</tr>
<tr>
<td>total coupling reaction, 209</td>
</tr>
<tr>
<td>washing periods, 229, 237</td>
</tr>
<tr>
<td>water effect, 210, 217, 237, 238, 269</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Benzoylation-tetrazonium method, 203 et seq.</td>
</tr>
<tr>
<td>Blocking, acetylation, 186, 193, 195, 218</td>
</tr>
<tr>
<td>effect on diazonium reaction, 206, 208, 209, 218</td>
</tr>
<tr>
<td>nitrobenzoyl chloride, 219, 220</td>
</tr>
<tr>
<td>of cytoplasmic arginine groups, 218</td>
</tr>
</tbody>
</table>
of FDNB, 260 et seq.
of Schiff's reagent, 186, 189, 193–195, 217, 219
other reagents, 221
sulphation, 187

C
Cartesian diver balance, 61, 93, 131
applications,
analysis of inorganic reactions, 128
buoyancy of plankton diatoms, 82
cholinesterase activity, quantitative determination, 132
determination of cell volume and of cell density, 80
g cavimetric measurement of a precipitate formed in a histochemical procedure, 81
growth in single amoebae, 79
haematological studies, 149
metabolism of developing amphibian embryos, 77
metabolism of starving amoebae, 74
neurochemical studies, 149
reference measure of mass, 79
respiration measurements, 145
study of water exchange across cellular membranes using D\textsubscript{2}O indicator, 86
sundry biochemical systems, 127
design and manufacture, bottom drop, 105
calibration, 68, 98
charge, 105, 136, 137, 141, 145
design, 64, 94, 134, 144
dimensions and shapes, 100
filling, 101, 135, 137, 138, 147, 148
flotation, 67, 95
manufacture, 63, 97
prevention of gas leakage, 110, 140
refilling, 147
seals, 106, 108
specific gravity of glass, 99
standards, 68
diver constant \(V \), 114, 124
diver equation for the ideal case, 114

D
DNAase activity, localization by substrate film method, 153
critique of the method, 162
comparison of histochemical reactions for DNAase, 164
control studies on DNA films, 162
resolution, 163
tissue sections, 164
instrumentation, 157
materials and solutions, 169
microscopic examination of DNA films, 158
photography, 158
preparation of frozen sections, 157
procedure, 158
examination and photography of DNA films and tissue sections, 161
exposure of DNA films to tissue sections, 160
mounting of tissue sections on gelatine-glycerol support, 160
preparation of tissues, 160
preparation of DNA films, 159
staining of DNA films and tissue sections, 161
properties of the substrate film, 155
resolution,
concentration of the substrate in the film, 155
thickness of the film and exposure time, 156, 163
other factors, 157

equilibrium pressure \(P \), 114, 124, 125, 140, 142
imperfections,
capillary forces: silicone coating, 123
diffusion and attainment of equilibrium, 116, 136, 140
gas escape/uptake, 120, 140, 142
principle of, 61, 94, 111
reduced weight—significance of, 72
sensitivity and precision, 71, 96, 143
temperature changes, influence of, 127
weighing, 70
SUBJECT INDEX

295

results, 166
pancreas, 168
rat liver, 168
small intestine, 166
thyroid, 168
theory of the method, 154

F
1-Fluoro-2: 4-dinitrobenzene as a cytochemical reagent, 259
analytical investigation of the reactive components in nuclei, 275
preparation of nuclei, 275
benzoylation and dinitrophenylation of the isolated nuclei, 276
fractionation of the reacted nuclei into their constituent chemical components, 276
identification of the nuclear components which react with FDNP, 277
quantitative analysis of the reactive nuclear groups, 278
critique of the method, 280
detection of the nitro groups in tissue sections, 269
fixation, 267, 273
histological procedure, 273
cytochemical schedules, 273
treatment with FDNB, 273
benzoylation, 274
fixation and preparation of the tissues, 273
loss of reactive components, 275, 280
preparation of the tissues, 273
procedures, 273
reactivity of FDNB and benzoyl chloride, 261
reaction with carbohydrates, 266
lipids, 266
nucleic acids, 266
proteins, 261
relationship between reaction of FDNB and that of tetrazotized dianisidine, 271, 280
reproducibility, 268, 275
results to date, 280
theory of the method, 261
water effect, 210, 217, 237, 238, 269
Freeze dry techniques, 157, 196, 217, 218, 226, 239, 254, 267, 275

Immersion refractometry, 1
hydration, interpretation of refractive index measurements, 3
interference microscopy,
 accuracy, 31, 48
Ambrose's "Bubble" method, 30
Barer's "Double Immersion" method, 29, 43, 46
cells of high refractive index, 45
critical thickness measurements, 28, 41
cytoplasmic inclusions in living cells, 31, 38
instruments, 47
measurement of phase change, 28, 41, 47
non-matching media, 28, 45
phase advancing and phase-retarding objects, 55
reduction of optical artifacts, 27
submicroscopic morphology, 38
mounting media, 1, 2, 6
adjustment of pH, 11
bovine plasma albumin, 7, 14
making and storing solutions, 11
necessary requirements, 6
preparation of specimens, 13
refractometry of, 12
tonicity, 8
viability of immersed cells, 14
phase contrast microscopy, 1, 3, 16, 27
intensity-matching method, 16
accuracy of, 17
appearance of the image, 16
applied to cell populations, 19
single cells, 19
interpretation of the image, 22
"halo" and "shading off" optical artifacts, 24, 27
intensity/phase change relationship, 22
low absorbing phase plates, 26
refractive index,
 Ambrose's "Bubble" method, 30
 as an indication of,
 hydration, 3
 total solids, 3
 Barer's "Double Immersion"
 method, 29
 B. cereus, 46
 B. megaterium, 46
 biréfringent objects, 53
 Lactobacillus bulgaricus, 43-45
 linearity, 5
 Nebenkern, 34, 38
 of bovine plasma albumin, 8
 of crystals, 1
 of living cells, 2, 3, 28, 34, 38
 of proteins, 3
 of red blood corpuscles, 4
 refractometers, 12

 P
 Periodate oxidation techniques, 172
 acetylation, 186, 193, 195
 aldehyde,
 aldehyde-fuchsin as a stain for
 elastic tissue, 194
 demonstration of, by Schiff's re-
 agent, 176
 periodate oxidation, 172 et seq.
 basophilia of tissue proteins after
 oxidation, 194
 blocking, 186, 189, 193-195, 217,
 219
 carbohydrates,
 clearing and cover-slipping, 198
 colouring, 195, 196
 dehydration and imbedding, 197,
 198
 detection of, 177 et seq.
 fixation of, 196
 freeze dry techniques, 196, 198
 glycol groups in, 171 et seq.
 loss of, 195
 reaction, 197
 sectioning and mounting, 197
 control methods, 195
 critique of the method, 181
 blocking, 186
 acetylation, 186, 195
 sulphation, 187
 comparison with other oxidants,
 184
 chromic acid, 184
 lead tetra-acetate, 184
 manganese acetates, 184
 sodium perbismuthate, 184
 sodium persulphate, 184
 identification of material colour-
 ing Schiff's reagent, 189, 192
 relative data, 182
 removal of PAS-positive materials
 by enzymes, 192
 deoxyribonuclease, 153 et seq.
 effect of water, 217
 enzyme removal of PAS-positive
 materials, 192
 enzymes, distribution in tissues,
 fluorescent antibody method, 164
 precipitation methods, 164, 165
 substrate film method, 153 et seq.
 tissues investigated, 166
 fats, 195, 196
 fixation,
 carbohydrates, 196
 selective formalin fixation, 193
 Hotchkiss technique, 175, 179
 in vivo control methods of PAS pro-
 cedure, 195
 Lillie technique, 174, 175, 179
 McManus technique, 174, 175, 177,
 193
 mixtures, 183, 195
 mucopolysaccharides, 192
 mucoproteins, 192
 oxidation of cis and trans isomers of
 cyclohexane glycols, 193
 optimum pH of Schiff's reagent, 194,
 195
 oxidation time, 193, 194
 performic acid as an oxidation agent,
 194
 polysaccharides, 192
 reactions,
 alcohols, 172, 174, 182
 aldehyde, 172 et seq.
 glycols, 172 et seq.
 rapidity of, 182, 193, 197
 Schiff (PAS), 171 et seq.
 Schiff's reagent, 171 et seq.
blocking, 186, 189, 193–195, 217, 219
controls, 177
demonstration of aldehyde, 174, 176, 189, 190
effect of formalin, 193
Hotchkiss technique, 179, 183
identification of material colouring Schiff’s reagent as aldehyde, 189
identification of material colouring Schiff’s reagent as of certain chemical constitution, 192
ketones, 176, 182
Lillie technique, 179, 183
McManus techniques, 177, 178, 183
Mowry technique, 183
other materials, 176
preparation, 178
Schiff-dissolving solutions, 177
Spot tests, 181, 191, 192
silver complexes, 190
spot tests, 180
Hoogwinkel and Smits, 181
Hotchkiss: periodate-fuchsin, 180, 192
McManus and Hoch-Ligeti, 181, 192
staining ability, effect of sodium hydroxide, 193
theory of the method,
periodic acid oxidation in organic chemistry, 172
periodate oxidation in histochemistry, 174
demonstration of the aldehyde by Schiff’s reagent, 176
summary, 177
Schiff’s reagent, see Periodate oxidation
Substrate film method, 153