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Introduction 

Formal Languages and Automata Theory are one of the most important base fields of (Theoretical) Computer 

Science. They are rooted in the middle of the last century, and these theories find important applications in other 

fields of Computer Science and Information Technology, such as, Compiler Technologies, at Operating 

Systems, ... Although most of the classical results are from the last century, there are some new developments 

connected to various fields. 

The authors of this book have been teaching Formal Languages and Automata Theory for 20 years. This book 

gives an introduction to these fields. It contains the most essential parts of these theories with lots of examples 

and exercises. In the book, after discussing some of the most important basic definitions, we start from the 

smallest and simplest class of the Chomsky hierarchy. This class, the class of regular languages, is well known 

and has several applications; it is accepted by the class of finite automata. However there are some important 

languages that are not regular. Therefore we continue with the classes of linear and context-free languages. 

These classes have also a wide range of applications, and they are accepted by various families of pushdown 

automata. Finally, the largest classes of the hierarchy, the families of context-sensitive and recursively 

enumerable languages are presented. These classes are accepted by various families of Turing machines. At the 

end of the book we give some further literature for those who want to study these fields more deeply and/or 

interested to newer developments. 

The comments of the lector and some other colleagues are gratefully acknowledged. 

Debrecen, 2014. 

Géza Horváth and Benedek Nagy 
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1. fejezet - Elements of Formal 
Languages 

Summary of the chapter:  In this chapter, we discuss the basic expressions, notations, 

definitions and theorems of the scientific field of formal languages and automata theory. In 

the first part of this chapter, we introduce the alphabet, the word, the language and the 

operations over them. In the second part, we show general rewriting systems and a way to 

define algorithms by rewriting systems, namely Markov (normal) algorithms. In the third part, 

we describe a universal method to define a language by a generative grammar. Finally, in the 

last part of this chapter we show the Chomsky hierarchy: a classification of generative 

grammars are based on the form of their production rules, and the classification of formal 

languages are based on the classification of generative grammars generating them. 

1. 1.1. Basic Terms 

An alphabet is a finite nonempty set of symbols. We can use the union, the intersection and the relative 

complement set operations over the alphabet. The absolute complement operation can be used if a universe set is 

defined. 

Example 1. Let the alphabet E be the English alphabet, the alphabet V contains the vowels, and the alphabet C 

is the set of the consonants. Then V∪C=E, V∩C=∅  and  

A word is a finite sequence of symbols of the alphabet. The length of the word is the number of symbols it is 

composed of, with repetitions. Two words are equal if they have the same length and they have the same letter 

in each position. This might sound trivial, but let us see the following example: 

Example 2. Let the alphabet V={1,2,+} and the words p=1+1, q=2. In this case 1+1≠ 2, i.e. p≠q, because these 

two words have different lengths, and also different letters in the first position. 

There is a special operation on words called concatenation, this is the operation of joining two words end to end. 

Example 3. Let the alphabet E be the English alphabet. Let the word p=railway, and the word q=station over 

the alphabet E. Then, the concatenation of p and q is p· q=railwaystation. The length of p is ∣ p∣ =7 and the 

length of q is ∣ q∣ =7, as well. 

If there is no danger of confusion we can omit the dot from between the parameters of the concatenation 

operation. It is obvious that the equation ∣ pq∣ =∣ p∣ +∣ q∣  holds for all words p and q. There is a special word 

called an empty word, whose length is 0 and denoted by λ. The empty word is the identity element of the 

concatenation operation, λp=pλ=p holds for each word p over any alphabet. The word u is a prefix of the word p 

if there exists a word w such that p=uw, and the word w is a suffix of the word p if there exists a word u such 

that p=uw. The word v is a subword of word p if there exists words u,w such that p=uvw. The word u is a proper 

prefix of the word p, if it is a prefix of p, and the following properties hold: u≠λ and u≠p. The word w is a proper 

suffix of the word p, if it is a suffix of p, and w≠λ, w≠ p. The word v is a proper subword of the word p, if it is a 

subword of p, and v≠λ, v≠p. As you can see, both the prefixes and suffixes are subwords, and both the proper 

prefixes and proper suffixes are proper subwords, as well. 

Example 4. Let the alphabet E be the English alphabet. Let the word p = railwaystation, and the words u=rail, 

v = way and w = station. In this example, the word u is a prefix, the word w is a suffix and the word v is a 

subword of the word p. However, the word uv is also a prefix of the word p, and it is a subword of the word p, 

as well. The word uvw is a suffix of the word p, but it is not a proper suffix. 

We can use the exponentiation operation on a word in a classical way, as well. p0 = λ by definition, p1 = p, and pi 

= pi-1p, for each integer i ≥ 2. The union of pi for each integer i ≥ 0 is denoted by p*, and the union of pi for each 

integer i ≥ 1 is denoted by p+.  These operations are called Kleene star and 

Kleene plus operations. p*=p+∪{λ} holds for each word p, and if p≠λ then p+=p* \ {λ}. We can also use the 

Kleene star and Kleene plus operations on an alphabet. For an alphabet V we denote the set of all words over the 

alphabet by V *, and the set of all words, but the empty word by V +. 
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A language over an alphabet is not necessarily a finite set of words, and it is usually denoted by L. For a given 

alphabet V the language L over V is L ⊆ V *. We have a set again, so we can use the classical set operations, 

union, intersection, and the complement operation, if the operands are defined over the same alphabet. For the 

absolute complement operation we use V * for universe, so  We can also use the concatenation 

operation. The concatenation of the languages L1 and L2 contains all words pq where p ∈  L1 and q ∈  L2. The 

exponentiation operation is defined in a classical way, as well. L0={λ} by definition, L1=L, and Li=Li-1· L, for 

each integer i ≥ 2. The language L 0 contains exactly one word, the empty word. The empty language does not 

contain any words, Le=∅ , and L 0 ≠ Le. We can also use the Kleene star and Kleene plus closure for languages. 

 so L*=L + if and only if λ ∈  L. 

The algebraic approach to formal languages can be useful for readers who prefer the classical mathematical 

models. The free monoid on an alphabet V is the monoid whose elements are from V *. From this point of view 

both operations, concatenation, (also called product) - which is not a commutative operation in this case -, and 

the union operation (also called addition), create a free monoid on set V, because these operations are 

associative, and they both have an identity element. 

1. Associative: 

• (L1 · L2) · L3 = L1 · (L2 · L3), 

• (L1 ∪  L2) ∪  L3 = L1 ∪  (L2 ∪  L3), 

where L1, L2, L3 ⊆ V *. 

2. Identity element: 

• L 0 · L1 = L1 · L0 = L1, 

• Le ∪  L1 = L1 ∪  Le = L1, 

where L1 ⊆ V *, L 0= {λ}, Le = ∅ . 

The equation Le · L1 = L1 · Le = Le also holds for each L1 ⊆ V *. 

2. 1.2. Formal Systems 

In this section, the definition of basic rewriting systems in general and a specific one, the Markov algorithm is 

presented. 

Definition 1.  A formal system (or rewriting system) is a pair W = ( V, P ), where V is an alphabet and P is a 

finite subset of the Cartesian product V *× V *. The elements of P are the (rewriting) rules or productions. If ( p, 

q ) ∈  P, then we usually write it in the form p → q. Let r, s ∈  V *, and we say that s can be directly derived (or 

derived in one step) from r (formally: r ⇒ s) if there are words p, p', p'', q ∈  V * such that r = p' pp'', s = p' qp'' 

and p → q ∈  P. The word s can be derived from r (formally: r ⇒ * s) if there is a sequence of words r0, r1, ..., rk ( 

k ≥ 1 ) such that r0 = r, rk = s and ri⇒ ri+1 holds for every 0 ≤ i < k. Moreover, we consider the relation r ⇒* r for 

every word r ∈  V *. (Actually, the relation ⇒* is the reflexive and transitive closure of the relation ⇒. 

A rewriting (or derivation) step can be understood as follows: the word s can be obtained from the word r in 

such a way that in s the right hand side q of a production of P is written instead of the left hand side p of the 

same production in r. 

Example 5.  Let W = ( V, P ) with V = { a, b, c, e, l, n, p, r, t } and P = { able → can, r → c, pp → b }. Then 

applerat ⇒ applecat ⇒ ablecat ⇒ cancat, and thus applerat ⇒* cancat in the system W. 

Now, we are going to present a special version of the rewriting systems that is deterministic, and was given by 

the Russian mathematician A. A. Markov as normal algorithms. 

Definition 2.  M = ( V, P, H ) is a Markov (normal) algorithm where 

• V is a finite alphabet, 
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• P is a finite ordered set (list) of productions of the form V* × V *, 

• H ⊆ P is the set of halting productions. 

The execution of the algorithm on input w ∈  V * is as follows: 

1. Find the first production in P such that its left-hand-side p is a subword of w. Let this production be p → q. If 

there is no such a production, then step 5 applies. 

2. Find the first (leftmost) occurrence of p in w (such that w = p'pp'' and p'p contains the subword p exactly 

once: as a suffix). 

3. Replace this occurrence of p in w by the right hand side q of the production. 

4. If p → q ∈  H, i.e., the applied production is a halting production, then the algorithm is terminated with the 

obtained word (string) as an output. 

5. If there are no productions in P that can be applied (none of their left-hand-side is a subword of w), then the 

algorithm terminates and w is its output. 

6. If a rewriting step is done with a non halting production, then the algorithm iterates (from step 1) for the 

newly obtained word as w. 

We note here that rules of type λ → q also can be applied to insert word q to the beginning of the current (input) 

word. 

The Markov algorithm may be terminated with an output, or may work forever (infinite loop). 

Example 6.  Let M = ({1,2,3 },{21→ 12, 31→ 13, 32→ 23},{}) be a Markov algorithm. Then, it is executed to 

the input 1321 as follows: 

1321 ⇒ 1312 ⇒ 1132 ⇒ 1123. 

Since there are no more applicable productions, it is terminated. Actually, it is ordering the elements of the 

input word in a non-decreasing way. 

Example 7.  Let 

W=({a,b,c},{aa → bbb, ac→ bab, bc → a},{}). 

Let us apply the algorithm W to the input 

ababacbbaacaa. 

As it can be seen in Animation 1 [3], the output is 

ababbabbbbbabbb. 

(For better understanding in the Animation the productions of the algorithm is numbered.) 

Animation 1. 

anim_Mark
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Exercise 1. Execute the Markov algorithm 

M = ({ 1, + }, { 1 + → + 1, + + → +, + → λ } ,{ + → λ }) 

on the following input words: 

• 1 + 1 + 1 + 1, 

• 11 + 11 + 11, 

• 111, 

• 111 + 1 + 11. 

Exercise 2. Execute the Markov algorithm M = ({1,×, a,b }, 

{ × 11 → a × 1, × 1 → a, 1a → a1b, ba → ab, b1 → 1b, a1 → a, ab → b, b → 1 } ,{ }) 

on the following input words: 

• 1 × 1, 

• 11 × 11, 

• 111 × 1, 

• 111 × 11. 

The previous two exercises are examples for Markov algorithms that compute unary addition and unary 

multiplication, respectively. 

It is important to know that this model of the algorithm is universal in the sense that every problem that can be 

solved in an algorithmic way can be solved by a Markov algorithm as well. 



 Elements of Formal Languages  

 5  
Created by XMLmind XSL-FO Converter. 

In the next section, other variations of the rewriting systems are shown: the generative grammars, which are 

particularly highlighted in this book. As we will see, the generative grammars use their productions in a non-

deterministic way. 

3. 1.3. Generative Grammars 

The generative grammar is a universal method to define languages. It was introduced by Noam Chomsky in the 

1950s. The formal definition of the generative grammar is the following: 

Definition 3.  The generative grammar (G) is the following quadruple: 

G = ( N, T, S, P ) 

where 

• N is the set of the nonterminal symbols, also called variables, (finite nonempty alphabet), 

• T is the set of the terminal symbols or constants (finite nonempty alphabet), 

• S is the start symbol, and 

• P is the set of the production rules. 

The following properties hold: N ∩ T = ∅  and S ∈  N. 

Let us denote the union of the sets N and T by V ( V = N ∪  T). Then, the form of the production rules is V *N V * 

→ V *. 

Informally, we have two disjoint alphabets, the first alphabet contains the so called start symbol, and we also 

have a set of productions. The productions have two sides, both sides are words over the joint alphabet, and the 

word on the left hand side must contain a nonterminal symbol. We have a special notation for the production 

rules. Let the word p be the left hand side of the rule, and the word q be the right hand side of the rule, then we 

use the p → q ∈  P expression. 

Example 8. Let the generative grammar G be G  = ( N, T, S, P ), where 

 

        N = {S,A}, 

T = {a,b}, andP = { 

  S → bAbS, 

  bAb → bSab, 

  A → λ, 

  S → aa 

}. 

 

In order to understand the operation of the generative grammar, we have to describe how we use the production 

rules to generate words. First of all, we should give the definition of the derivation. 

Definition 4.  Let G = ( N, T, S, P ) be a generative grammar, and let p and q be words over the joint alphabet V 

= N ∪  T. We say that the word q can be derived in one step from the word p, if p can be written in a form p = 

uxw, q can be written in a form q = uyw, and x → y ∈  P. (Denoted by p  ⇒ q.) The word q can be derived from 

the word p, if q = p or there are words r1, r2,..., rn such that r1 = p, rn = q and the word ri can be derived in one 

step from the word ri-1, for each 2 ≤ i ≤ n. (Denoted by p ⇒* q.) 

Now, that we have a formal definition of the derivation, let us see an example for deeper understanding. 

Example 9. Let the generative grammar G be G = ( N, T, S, P ) , where 

 

        N = {S,A}, 

T = {0,1}, andP = { 

  S → 1, 

  S → 1A, 
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  A → AA, 

  A → 0, 

  A → 1 

}. 

Let the words p,t and q be p = A0S0, t = A01A0, and q = A0110. In this example, the word t can be derived from 

the word p in one step, (p → t), because p can be written in a form p = uxw, where u = A0, x = S, w = 0, and the 

word t can be written in a form t = uyw, where y = 1A, and S → 1A ∈  P. 

The word q can be derived from the word p, (p ⇒*q), because there exist words r1,r2 and r3 such that r1 = p, r2 = 

t, r3 = q and r1 ⇒  r2 and r2 ⇒ r3. 

Now we have all the definitions to demonstrate how we can use the generative grammar to generate a language. 

Definition 5. Let G = ( N, T, S, P ) be a generative grammar. The language generated by the grammar G is 

L(G)={p∣ p ∈  T*, S ⇒*p}. 

The above definition claims that the language generated by the grammar G contains each word over the terminal 

alphabet which can be derived from the start symbol S. 

Example 10. Let the generative grammar G be G = ( N, T, S, P ), where 

 

        N = {S,A}, 

T = {a,b}, andP = { 

  S → bb, 

  S → ASA, 

  A → a 

}. 

In this example, the word bb can be derived from the start symbol S in one step, because S → bb ∈  P, so the 

word bb is in the generated language, bb ∈  L(G). 

The word abba can be derived from the start symbol, because S ⇒ ASA, ASA ⇒ aSA, aSA ⇒ abbA, abbA → 

abba, so the word abba is also in the generated language, abba ∈  L(G). 

The word bab can not be derived from the start symbol, so it is not in the generated language, bab ∉  L(G). 

In this case, it is easy to determine the generated language, L(G) = {aibbai∣ i ≥ 0}. 

Exercise 3. Create a generative grammar G, which generates the language L = {a*b+c*}! 

Exercise 4. Create a generative grammar G, which generates the language of all binary numbers! 

4. 1.4. Chomsky Hierarchy 

The Chomsky hierarchy was described first by Noam Chomsky in 1956. It classifies the generative grammars 

based on the forms of their production rules. The Chomsky hierarchy also classifies languages, based on the 

classes of generative grammars generating them. The formal definition is provided below. 

Definition 6. (Chomsky hierarchy) Let G = ( N, T, S, P ) be a generative grammar. 

• Type 0 or unrestricted grammars. Each generative grammar is unrestricted. 

• Type 1 or context-sensitive grammars. G is called context-sensitive, if all of its production rules have a form 

p 1 Ap 2 → p1qp2, 

or 

S → λ, 
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where p 1 , p 2 ∈  V *, A ∈  N and q ∈  V +. If S → λ ∈  P then S does not appear in the right hand side word of 

any other rule. 

• Type 2 or context-free grammars. The grammar G is called context-free, if all of its productions have a form 

A → p, 

where A ∈  N and p ∈  V *. 

• Type 3 or regular grammars. G is called regular, if all of its productions have a form 

A → r, 

or 

A → rB, 

where A,B ∈  N and r ∈  T *. 

Example 11.  Let the generative grammar G 0  be 

 

        G 

        0 = ({S,X},{x,y},S,P) 

P = { 

  S → SXSy, 

  XS → y, 

  X → SXS, 

  S → yxx 

  }. 

This grammar is unrestricted, because the second rule is not a context-sensitive rule. 

Example 12.  Let the generative grammar G 1  be 

 

        G 

        1 = ({S,X},{x,y},S,P) 

P = { 

  S → SXSy, 

  XSy → XyxXy, 

  S → yXy, 

  X → y 

  }. 

This grammar is context-sensitive, because each production rule has an appropriate form. 

Example 13.  Let the generative grammar G 2  be 

 

        G 

        2 = ({S,X},{x,y},S,P) 

P = { 

  S → SyS, 

  S → XX, 

  S → yxy, 

  X → ySy, 

  X → λ 

}. 

This grammar is context-free, because the left hand side of each production rule is a nonterminal symbol. 

Example 14.  Let the generative grammar G be 

 

        G = ({S,X},{x,y},S,P) 

P = { 

  S → xyS, 

  S → X, 
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  X → yxS, 

  S → x, 

  X → λ 

}. 

This grammar is regular, because the left hand side of each production rule is a nonterminal, and the right hand 

side contains at most one nonterminal symbol, in last position. 

Exercise 5. What is the type of the following grammars? 

 

        1. G = ({S,A},{0,1},S,P) 

     P = { 

     S → 0101A, 

     S → λ, 

     A → 1S, 

     A → 000 

     }. 

      

  2. G = ({S,A,B},{0,1},S,P) 

     P = { 

     S → 0A01B, 

     S → λ, 

     0A01 → 01A101, 

     A → 0BB1, 

     B → 1A1B, 

     B → 0011, 

     A → 1 

     }. 

      

  3. G = ({S,A,B},{0,1},S,P) 

     P = { 

     S → 0ABS1, 

     S → 10, 

     0AB → 01SAB, 

     1SA → 111, 

     A → 0, 

     B → 1 

     }. 

      

  4. G = ({S,A},{0,1},S,P) 

     P = { 

     S → 00A, 

     S → λ, 

     A → λ, 

     A → S1S 

     }. 

 

Definition 7. The language L is regular, if there exists a regular grammar G such that L = L (G). 

The same kind of definitions are given for the context-free, context-sensitive, and recursively enumerable 

languages: 

Definition 8. The language L is context-free, if there exists a context-free grammar G such that L = L (G). 

Definition 9. The language L is context-sensitive, if there exists a context-sensitive grammar G such that L = L 

(G). 

Definition 10. The language L is called recursively enumerable, if there exists an unrestricted grammar G such 

that L = L (G). 

Although these are the most often described classes of the Chomsky hierarchy, there are also a number of 

subclasses which are worth investigating. For example, in chapter 3 we introduce the linear languages. A 

grammar is linear, if it is context-free, and the right hand side of its rules contain maximum one nonterminal 

symbol. The class of linear languages is a proper subset of the class of context-free languages, and it is a proper 

superset of the regular language class. Example 15. [9] shows a typical linear language and a typical linear 

grammar. 

Linear_exa
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Example 15. Let L be the language of the palindromes over the alphabet T = {a,b}. (Palindromes are words 

that read the same backward or forward.) Language L is generated by the following linear grammar. 

 

        G = ({S},{a,b},S,P) 

P = { 

  S → aSa, 

  S → bSb, 

  S → a, 

  S → b, 

  S → λ 

}. 

Language L is linear, because it can be generated by the linear grammar G. 

Example 16. In Example 9 [5] we can see a context-free grammar, which is not linear, because the production 

A → AA is not a linear rule. However, this context-free grammar generates a regular language, because the 

same language can be generated by the following regular grammar. 

 

        G = ({S,A},{0,1},S,P, andP = { 

  S → 1A, 

  A → 1A, 

  A → 0A, 

 A → λ 

}. 

It is obvious that context-sensitive grammars are unrestricted as well, because each generative grammar is 

unrestricted. It is also obvious that regular grammars are context-free as well, because in regular grammars the 

left hand side of each rule is a nonterminal, which is the only condition to be satisfied for a grammar in order to 

be context-free. 

Let us investigate the case of the context-free and context sensitive grammars. 

Example 17. Let the grammar G be 

 

        G = ({S,A},{x,y},S,P) 

P = { 

  S → AxA, 

  A → SyS, 

  A → λ, 

  S → λ 

}. 

This grammar is context-free, because the left hand side of each rule contains one nonterminal. At the same 

time, this grammar is not context-sensitive, because 

• the rule A → λ is not allowed in context-sensitive grammars, 

• if S → λ ∈  P, then the rule A → SyS is not allowed. 

This example shows that there are context-free grammars which are not context-sensitive. Although this 

statement holds for grammars, we can show that in the case of languages the Chomsky hierarchy is a real 

hierarchy, because each context-free language is context-sensitive as well. To prove this statement, let us 

consider the following theorem. 

Theorem 1. For each context-free grammar G we can give context-free grammar G', which is context-sensitive 

as well, such that L (G) = L (G'). 

Proof. We give a constructive proof of this theorem. We are going to show the necessary steps to receive an 

equivalent context-sensitive grammar G' for a context-free grammar G = ( N, T, S, P ). 

1. First, we have to collect each nonterminal symbol from which the empty word can be derived. To do this, let 

the set U (1) be U (1) = {A∣ A ∈  N, A → λ ∈  P}. Then let U (i) = U (i-1) ∪  {A∣ A → B1B2...Bn ∈  P, B1, B2,..., 

CF_exa
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Bn ∈  U (i-1)}. Finally, we have an integer i such that U (i) = U (i-1) = U which contains all of the 

nonterminal symbols from which the empty word can be derived. 

2. Second, we are going to create a new set of rules. The right hand side of these rules should not contain the 

empty word. Let P' = (P ∪  P1)\{A→ λ∣ A ∈  N}. The set P1 contains production rules as well. B → p ∈  P1 if 

B → q ∈  P and we get p from q by removing some letters contained in set U. 

3. Finally, if S ∉  U, then G' = ( N, T, S, P' ). If set U contains the start symbol, then the empty word can be 

derived from S, and λ∈  L (G). In this case, we have to add a new start symbol to the set of nonterminals, and 

we also have to add two new productions to the set P1, and G' = ( N ∪{S'}, T, S', P' ∪  {S' → λ, S' → S}), so 

G' generates the empty word, and it is context sensitive. 

QED. 

Example 18. Let the context-free grammar G be 

 

        G = ({S,A,B},{x,y},S,P) 

P = { 

  S → ASxB, 

  S → AA, 

  A → λ, 

  B → SyA 

}. 

Now, we create a context-sensitive generative grammar G', such that L (G') = L (G). 

 

        1. U (1) = {A}, 

     U (2) = {A,S} = U. 

      

  2. P' = { 

     S → ASxB, S → SxB, S → AxB, S → xB, 

     S → AA, S → A, 

     B → SyA, B → yA, B → Sy, B → y 

     }. 

      

  3. G' = ({S,A,B,S'},{x,y},S',P' ∪{S' → λ, S' → S}). 

 

Exercise 6. Create a context-sensitive generative grammar G', such that L (G') = L (G)! 

 

        G = ({S,A,B,C},{a,b},S,P) 

P = { 

  S → aAbB, 

  S → aCCb, 

  C → λ, 

  A → C, 

  B → ACC, 

  A → aSb 

}. 

 

Exercise 7. Create a context-sensitive generative grammar G', such that L (G') = L (G)! 

 

        G = ({S,X,Y},{0,1},S,P) 

P = { 

  S → λ, 

  S → XXY, 

  X → Y0Y1, 

  Y → 1XS1, 

  X → S00S 

}. 
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In the following chapters we are going to investigate the language classes of the Chomsky hierarchy. We will 

show algorithms to decide if a word is in a language generated by a generative grammar. We will learn methods 

which help to specify the position of a language in the Chomsky hierarchy, and we are going to investigate the 

closure properties of the different language classes. 

We will introduce numerous kinds of automata. Some of them accept languages, and we can use them as an 

alternative language definition tool, however, some of them calculate output words from the input word, and we 

can see them as programmable computational tools. First of all, in the next chapter, we are going to deal with 

the most simple class of the Chomsky hierarchy, the class of regular languages. 
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2. fejezet - Regular Languages and 
Finite Automata 

Summary of the chapter:   In this chapter, we deal with the simplest languages of the 

Chomsky hierarchy, i.e., the regular languages. We show that they can be characterized by 

regular expressions. Another description of this class of languages can be given by finite 

automata: both the class of deterministic finite automata and the class of nondeterministic 

finite automata accept this class. The word problem (parsing) can be solved in real-time for 

this class by the deterministic finite automata. This class is closed under regular and under 

set-theoretical operations. This class also has a characterization in terms of analyzing the 

classes of possible continuations of the words (Myhill-Nerode theorem). We also present 

Mealy-type and Moore-type transducers: finite transducers are finite automata with output. 

1. 2.1. Regular Grammars 

In order to be comprehensive we present the definition of regular grammars here again. 

Definition  (Regular grammars). A grammar G=(N,T,S,P) is regular if each of its productions has one of the 

following forms: A → u, A → uB, where A,B∈  N, u∈  T*. The languages that can be generated by regular 

grammars are the regular languages (they are also called type 3 languages of the Chomsky hierarchy). 

Animation 2. [12] presents an example for a derivation in a regular grammar. 

Animation 2. 

 

We note here that the grammars and languages of the definition above are commonly referred to as right-linear 

grammars and languages, and regular grammars and languages are defined in a more restricted way: 

Definition 12. (Alternative definition of regular grammars). A grammar G = ( N, T, S, P ) is regular if each of 

its productions has one of the following forms: A → a, A → aB, S → λ, where A,B ∈  N, a ∈  T. The languages 

that can be generated by these grammars are the regular languages. 

anim1_reg
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Now we show that the two definitions are equivalent in the sense that they define the same class of languages. 

Theorem 2. The language classes defined by our original definition and by the alternative definition coincide. 

Proof. The proof consists of two parts: we need to show that languages generated by grammars of one definition 

can also be generated by grammars of the other definition. 

It is clear the grammars satisfying the alternative definition satisfy our original definition at the same time, 

therefore, every language that can be generated by the grammars of the alternative definition can also be 

generated by grammars of the original definition. 

Let us consider the other direction. Let a grammar G = ( N, T, S, P ) may contain rules of types A → u and A → 

uB (A,B ∈  N, u ∈  T*). Then, we give a grammar G' = ( N', T, S', P' ) such that it may only contain rules of the 

forms A → a, A → aB, S' → λ (where A,B ∈  N', a ∈  T) and it generates the same language as G, i.e., L (G) = L 

(G'). 

First we obtain a grammar G'' such that L (G) = L (G'') and G'' = ( N'', T, S, P'' ) may contain only rules of the 

following forms: A → a, A → aB, A → B, A → λ (where A,B ∈  N'', a ∈  T). Let us check every rule in P: if it 

has one of the forms above, then we copy it to the set P'', else we will do the following: 

• if the rule is of the form A → a1... ak for k > 1, where ai ∈  T, i ∈ {1,...,k}, then let the new nonterminals X1,..., 

Xk-1 be introduced (new set for every rule) and added to the set N'' and instead of the actual rule the next set of 

rules is added to P'': A → a1X1, X1 → a2X2, ..., Xk-2 → ak-1Xk-1, Xk-1 → ak. 

• if the rule is of the form A → a1... akB for k > 1, where ai ∈  T, i ∈  {1,...,k}, then let the new nonterminals 

X1,..., Xk-1 be introduced (new set for every rule) and put to the set N'', and instead of the actual rule the next 

set of rules is added to P'': A → a1X1, X1 → a2X2, ..., Xk-2 → ak-1Xk-1, Xk-1 → akB. 

When every rule is analyzed (and possibly replaced by a set of rules) we have grammar G''. It is clear that the 

set of productions P'' of G'' may contain only rules of the forms A → a, A → aB, A → a, A → λ (where A,B ∈  

N'', a∈  T), since we have copied only rules from P that have these forms, and all the rules that are added to the 

set of productions P'' by replacing a rule are of the forms A → aB, A → a (where A,B ∈  N'', a ∈  T). Moreover, 

exactly the same words can be derived in G'' and in G. The derivation graphs in the two grammars can be 

mapped in a bijective way. When a derivation step is applied in G with a rule A → a1... that is not in P'', then the 

rules must be used in G'' that are used to replace the rule A → a1...: applying the first added rule first A → a1X1, 

then there is only one rule that can be applied in G'', since there is only one rule added with X1 in its left hand 

side... therefore, one needs to apply all the rules of the chain that was used to replace the original rule A → a1.... 

Then, if there is a nonterminal B at the end of the rule A → a1..., then it is located at the end of the last applied 

rule of the chain, and thus the derivation can be continued in the same way in both grammars. The other way 

around, if we use a newly introduced rule in the derivation in G'', then we must use all the rules of the chain, and 

also we can use the original rule that was replaced by this chain of rules in the grammar G. In this way, there is a 

one-to-one correspondence in the completed derivations of the two grammars. (See Figure 2.1. for an example 

of replacing a long rule by a sequence of shorter rules.) 

2.1. ábra - In derivations the rules with long right hand side are replaced by chains of 

shorter rules, resulting binary derivation trees in the new grammar. 

 

Now we may have some rules in P'' that do not satisfy the alternative definition. The form of these rules can 

only be A → B and C → λ (where A,B,C ∈  N'', C ≠ S). The latter types of rules can be eliminated by the Empty-

word lemma (see Theorem 1. [9]). Therefore, we can assume that we have a grammar G''' = ( N''', T, S', P''' ) 

such that L (G''') = L (G) and P''' may contain only rules of the forms A → aB, A → B, A → a, S' → λ (where 

A,B ∈  N''', a∈  T and in case S' → λ ∈  P''' the start symbol S' does not occur on the right hand side of any of the 

rules of P'''). Let us define the following sets of nonterminals: 

• let U1 (A) = {A}, 

• let Ui+1 (A) = Ui (A) ∪  {B ∈  N'''∣ ∃  C ∈  Ui (A) such that C → B ∈  P'''}, for i > 1. 

thm_emptyword
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Since N''' is finite there is a minimal index k such that Uk(A) = Uk+1(A). Let U(A) denote the set Uk(A) with the 

above property. In this way, U(A) contains exactly those nonterminals that can be derived from A by using rules 

only of the form B → C (where B,C ∈  N'''). We need to replace the parts A ⇒*B → r of the derivations in G''' by 

a direct derivation step in our new grammar, therefore, let G' = ( N''', T, S', P' ), where P' = {A → r∣ ∃  B ∈  N''' 

such that B → r ∈  P''', r ∉  N''' and B ∈  U(A)}. Then G' fulfills the alternative definition, moreover, it generates 

the same language as G''' and G. 

QED. 

Further we will call a grammar a regular grammar in normal form if it satisfies our alternative definitions. In 

these grammars the structures of the rules are more restricted: if we do not derive the empty word, then we can 

use only rules that have exactly one terminal in their right hand side. 

Example 19. Let 

G = ({S,A,B},{0,1,2},S, 

 

{  S → 010B,  

   A → B, 

   A → 2021,  

   B → 2A,  

   B → S, 

   B → λ  

}).  

Give a grammar that is equivalent to G and is in normal form. 

Solution: 

Let us exclude first the rules that contain more than one terminal symbols. Such rules are S → 010B and A → 

2021. Let us substitute them by the sets 

{S → 0X1, X1 → 1X2, X2 → 0B} 

and 

{A → 2X3, X3 → 0X4, X4 → 2X5, X5 → 1} 

of rules, respectively, where the newly introduced nonterminals are {X1, X2} and {X3, X4, X5}, respectively. The 

obtained grammar is 

G'' = ({S, A, B, X1, X2, X3, X4, X5},{0,1,2},S, 

 

{  S → 0X1, 

   X1 → 1X2,  

   X2 → 0B, 

   A → B, 

   A → 2X3, 

   X3 → 0X4,  

   X4 → 2X5, 

   X5 → 1, 

   B → 2A,  

   B → S,  

   B → λ 

 ). 

Now, by applying the Empty-word lemma, we can exclude rule B → λ (the empty word can be derived from the 

nonterminals B and A in our example) and by doing so we obtain grammar 

G''' = ({S, A, B, X1, X2, X3, X4, X5}, {0,1,2}, S, 

 

{  S → 0X1, 

   X1 → 1X2, 
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   X2 → 0B, 

   X2 → 0, 

   A → B, 

   A → 2X3, 

   X3 → 0X4, 

   X4 → 2X5, 

   X5 → 1, 

   B → 2A, 

   B → 2, 

   B → S 

}). 

Now we are excluding the chain rules A → B, B → S. To do this step, first, we obtain the following sets: 
 

U 0 (S) = {S}  U 0 (A) = {A}  U 0 (B) = {B} 

U 1 (S) = {S} = U(S)  U 1 (A) = {A,B}  U 1 (B) = {B,S} 

  U 2 (A) = {A,B,S}  U 2 (B) = {B,S} = 

U(B) 

  U 3 (A) = {A,B,S} = 

U(A) 
  

Actually for those nonterminals that are not appearing in chain rules these sets are the trivial sets, e.g., U (X1) = 

U0 (X1) = {X1}. Thus, finally, we obtain grammar 

G' = ({S, A, B, X1, X2, X3, X4, X5}, {0,1,2}, S, 

 

{  S → 0X1, 

   A → 0X1, 

   B → 0X1, 

   X1 → 1X2,  

   X2 → 0B, 

   X2 → 0, 

   A → 2X3, 

   X3 → 0X4, 

   X4 → 2X5, 

   X5 → 1, 

   B → 2A, 

   A → 2A, 

   B → 2, 

   A → 2  

}). 

Since our transformations preserve the generated language, every obtained grammar (G'', G''' and also G') is 

equivalent to G. Moreover, G' is in normal form. Thus the problem is solved. 

Exercise 8. Let 

G = ({S, A, B, C},{a,b},S, 

 

{  S → abA,  

   S → A, 

   A → B,  

   B → abab, 

   B → aA, 

   B → aaC,  

   B → λ,  

   C → aaS  

}).  

Give a grammar that is equivalent to G and is in normal form. 

Exercise 9. Let 

G = ({S, A, B, C},{a,b,c},S, 
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{  S → A, 

   S → B, 

   A → aaB, 

   B → A, 

   B → acS, 

   B → C,  

   C → c, 

   C → λ  

}).  

Give a grammar that is equivalent to G and is in normal form. 

Exercise 10. Let 

G = ({S, A, B, C, D},{a,b,c},S, 

 

{  S → aA, 

   S → bB, 

   A → B, 

   B → A, 

   B → ccccC, 

   B → acbcB, 

   C → caacA,  

   C → cba 

}).  

Give a grammar that is equivalent to G and is in normal form. 

Exercise 11. Let 

G = ({S, A, B, C, D},{1,2,3,4},S, 

 

{  S → 11A,  

   S → 12B, 

   A → B, 

   B → C, 

   B → 14, 

   B → 4431, 

   C → 3D, 

   D → 233C  

}).  

Give a grammar that is equivalent to G and is in normal form. 

2. 2.2. Regular Expressions 

In this section, we will describe the regular languages in another way. First, we define the syntax and the 

semantics of regular expressions, and then we show that they describe the same class of languages as the class 

that can be generated by regular grammars. 

Definition 13. (Regular expressions). Let T be an alphabet and V = T ∪  {∅ , λ, +, ·, *,(,)} be defined as its 

extension, such that T ∩ {∅ , λ, +, ·, *,(,)} = ∅ . Then, we define the regular expressions over T as expressions 

over the alphabet V in an inductive way: 

• Base of the induction: 

• ∅  is a (basic) regular expression, 

• λ is a (basic) regular expression, 

• every a ∈  T is a (basic) regular expression; 

• Induction steps 
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• if p and r are regular expressions, then (p+r) is also a regular expression, 

• if p and r are regular expressions, then (p · r) is also a regular expression (we usually eliminate the sign · 

and write (pr) instead (p · r)), 

• if r is a regular expression, then r* is also a regular expression. 

Further, every regular expression can be obtained from the basic regular expressions using finite number of 

induction steps. 

Definition 14 (Languages described by regular expressions). Let T be an alphabet. Then, we define languages 

described by the regular expressions over the alphabet T following their inductive definition. 

• Basic languages: 

• ∅  refers to the empty language {}, 

• λ refers to the language {λ}, 

• for every a ∈  T, the expression refers to the language {a}; 

• Induction steps: 

• if p and r refer to the languages Lp and Lr, respectively, then the regular expressions (p+r) refers to the 

language Lp∪  Lr, 

• if p and r refer to the languages Lp and Lr, respectively, then the regular expressions (p · r) or (pr) refers to 

the language Lp · Lr, 

• if r refers to a language Lr then r* refers to the language Lr
*. 

The language operations used in the above definition are the regular operations: 

• the addition (+) is the union of two languages, 

• the product is the concatenation of two languages, and 

• the reflexive and transitive closure of concatenation is the (Kleene-star) iteration of languages. 

Two regular expressions are equivalent if they describe the same language. Here are some examples: 
 

(p+r) ≡ (r+p) (commutativity of union) 

((p+r)+q) ≡ (p+(r+q)) (associativity of union) 

(r+∅ ) ≡ r (additive zero element, 

unit element for union) 

((pr)q) ≡ (p(rq) (associativity of 

concatenation) 

(rλ) ≡ (λr) ≡ r (unit element for 

concatenation) 

((p+r)q) ≡ ((pq)+(rq)) (left distributivity) 

(p(r+q)) ≡ ((pr)+(pq)) (right distributivity) 

(r∅ ) ≡ ∅  (zero element for 

concatenation) 

λ * ≡ λ (iteration of the unit 

element) 

∅  * ≡ λ (iteration of the zero 

element) 

(rr*) ≡ (r*r) (positive iteration) 
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Actually, the values of the last equivalence are frequently used, and they are denoted by r+, i.e., r+ ≡ rr* by 

definition. This type of iteration which does not allow for 0 times iteration, i.e., only positive numbers of 

iterations are allowed, is usually called Kleene-plus iteration. 

With the use of the above equivalences we can write most of the regular expressions in a shorter form: some of 

the brackets can be eliminated without causing any ambiguity in the language described. The elimination of the 

brackets is usually based on the associativity (both for the union and for the concatenation). Some further 

brackets can be eliminated by fixing a precedence order among the regular operations: the unary operation 

(Kleene-)star is the strongest, then the concatenation (the product), and (as usual) the union (the addition) is the 

weakest. 

We have regular grammars to generate languages and regular expressions to describe languages, but these 

concepts are not independent. First we will prove one direction of the equivalence between them. 

Theorem 3. Every language described by a regular expression can be generated by a regular grammar. 

Proof. The proof goes by induction based on the definition of regular expressions. Let r be a basic regular 

expression, then 

• if r is ∅ , then the empty language can be generated by the regular grammar 

(S, A, T, S, {A → a}); 

• if r is λ, then the language {λ} can be generated by the regular grammar 

(S, T, S, {S → λ}); 

• if r is a for a terminal a ∈  T, then the language {a} is generated by the regular grammar 

(S, T, S, {S → a}). 

If r is not a basic regular expression then the following cases may occur: 

• r is (p+q) with some regular expressions p,q such that the regular grammars Gp = (Np, T, Sp, Pp) and Gq = (Nq, 

T, Sq, Pq) generate the languages described by expression p and q, respectively, where Np ∩ Nq = ∅  (this can 

be done by renaming nonterminals of a grammar without affecting the generated language). Then let 

G = (Np ∪  Nq ∪  {S}, T, S, Pp ∪  Pq ∪  {S → Sp, S→ Sq}), 

where S ∉  Np ∪  Nq is a new symbol. It can be seen that G generates the language described by expression r. 

• r is (p · q) with some regular expressions p,q such that the regular grammars Gp = (Np, T, Sp, Pp) and Gq = (Nq, 

T, Sq, Pq) generate the languages described by expression p and q, respectively, where Np ∩ Nq = ∅ . Then let 

G = (Np ∪  Nq,T, Sp, Pq ∪  {A → uB∣ A → uB ∈  Pp, A,B ∈  Np, u ∈  T*} ∪  {A → uSq∣ A → u 

∈  Pp, A ∈  Np, u ∈  T*}). 

It can be shown that G generates the language described by expression r. 

• r is a regular expression of the form q* for a regular expression q. Further let Gq = (Nq, T, Sq, Pq) be a regular 

grammar that generates the language described by expression q. Then, let 

G = (Nq ∪  {S},T,S, Pq ∪  {S → λ, S → Sq} ∪  {A → uSq∣ A → u ∈  Pq, A ∈  Nq, u ∈  T*}), 

where S ∉  Nq. It can be shown that G generates the language described by expression r. 

Since every regular expression built by finitely many applications of the induction step, for any regular 

expression one can construct a regular grammar such that the grammar generates the language described by the 

expression. 

QED. 
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When we want to have a grammar that generates the language given by a regular expression, the process can be 

faster, if we know that every singleton, i.e., language containing only one word, can easily be obtained by a 

grammar having only one nonterminal (the start symbol) and only one production that allows to generate the 

given word in one step. 

Example 20. Let r = (cbb)*(ab+ba) be a regular expression (that describes a language over the alphabet 

{a,b,c}). Give a regular grammar that generates this language. 

Solution: 

Let us build up r from its subexpressions. According to the above observation, the language {cbb} can be 

generated by the grammar 

Gcbb =({Scbb},{a,b,c},Scbb,{Scbb → cbb}). 

Now, let us use our induction step to obtain the grammar G (  cbb  )
* that generates the language (cbb)*: then 

G (  cbb  )
* = ({Scbb, S(cbb)

*},{a,b,c},S(cbb)
*, 

{Scbb → ccb, S(cbb)
* → λ, S(cbb)

* → Scbb, S(cbb) → cbb S(cbb)}). 

The languages {ab} and {ba} can be generated by grammars 

Gab = ({Sab},{a,b,c},Sab,{Sab → ab}) 

and 

Gab = ({Sba},{a,b,c},Sba,{Sba → ba}), 

respectively. Their union, ab+ba, then is generated by the grammar 

Gab+ba = ({Sab,Sba,Sab+ba},{a,b,c},Sab+ba, 

{Sab → ab, Sba → ba, Sab+ba → Sab, Sab+ba → Sba}) 

according to our induction step. 

Finally, we need the concatenation of the previous expressions (cbb)* and (ab+ba), and it is generated by the 

grammar 

G (  cbb   
*
)(  ab+ba  ) = ({Scbb, S(cbb)

*,Sab,Sba,Sab+ba}, {a,b,c}, S(cbb)
*, 

{Scbb → cbbSab+ba, S(cbb)
* → Sab+ba, S(cbb)

* → Scbb, S(cbb)
* → cbb S(cbb)

*, 

Sab → ab, Sba → ba, Sab+ba → Sab, Sab+ba → Sba}) 

due to our induction step. The problem is solved. 

Exercise 12. Give a regular expression that describes the language containing exactly those words that contain 

three consecutive a's over the alphabet {a,b}. 

Exercise 13. Give a regular expression that describes the language containing exactly those words that do not 

contain two consecutive a's (over the alphabet {a,b}). 

Exercise 14. Give a regular grammar that generates the language 0*(1+22)(2*+00). 

Exercise 15. Give a regular grammar that generates the language 0+1(1+0)*. 

Exercise 16. Give a regular grammar that generates the language (a+bb(b+(cc)*))*(ababa+c*). 

3. 2.3. Finite Automata as Language Recognizers 
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In this section we first define several variations of the finite automata distinguished by the properties of the 

transition function. 

Definition 15 (Finite automata). Let A = ( Q, T, q0, δ, F ). It is a finite automaton (recognizer), where Q is the 

finite set of (inner) states, T is the input (or tape) alphabet, q0 ∈  Q is the initial state, F ⊆ Q is the set of final 

(or accepting) states and δ is the transition function as follows. 

• δ : Q × (T ∪  {λ}) → 2Q (for nondeterministic finite automata with allowed λ-transitions); 

• δ : Q × T → 2Q (for nondeterministic finite automata without λ-transitions); 

• δ : Q × T → Q (for deterministic finite automata, λ can be partially defined); 

• δ : Q × T → Q (for completely defined deterministic finite automata (it is not allowed that δ is partial 

function, it must be completely defined). 

One can observe, that the second variation is a special case of the first one (not having λ-transitions). The third 

variation is a special case of the second one having sets with at most one element as images of the transition 

function, while the fourth case is more specific allowing sets exactly with one element. 

One can imagine a finite automaton as a machine equipped with an input tape. The machine works on a discrete 

time scale. At every point of time the machine is in one of its states, then it reads the next letter on the tape (the 

letter under the reading head), or maybe nothing (in the first variations), and then, according to the transition 

function (depending on the actual state and the letter being read, if any) it goes to a/the next state. It may happen 

in some variations that there is no transition defined for the actual state and letter, then the machine gets stuck 

and cannot continue its run. 

There are two widely used ways to present automata: by Cayley tables or by graphs. When an automaton is 

given by a Cayley table, then the 0th line and the 0th column of the table are reserved for the states and for the 

alphabet, respectively (and it is marked in the 0th element of the 0th row). In some cases it is more convenient to 

put the states in the 0th row, while in some cases it is a better choice to put the alphabet there. We will look at 

both possibilities. The initial state should be the first among the states (it is advisable to mark it by a → sign 

also). The final states should also be marked, they should be circled. The transition function is written into the 

table: the elements of the set δ(q,a) are written (if any) in the field of the column and row marked by the state q 

and by the letter a. In the case when λ-transitions are also allowed, then the 0th row or the column (that contains 

the symbols of the alphabet) should be extended by the empty word (λ) also. Then λ-transitions can also be 

indicated in the table. 

Automata can also be defined in a graphical way: let the vertices (nodes, that are drawn as circles in this case) of 

a graph represent the states of the automaton (we may write the names of the states into the circles). The initial 

state is marked by an arrow going to it not from a node. The accepting states are marked by double circles. The 

labeled arcs (edges) of the graph represent the transitions of the automaton. If p ∈  δ (q,a) for some p,q ∈  Q, a ∈  

T ∪  {λ}, then there is an edge from the circle representing state q to the circle representing state p and this edge 

is labeled by a. (Note that our graph concept is wider here than the usual digraph concept, since it allows 

multiple edges connecting two states, in most cases these multiple edges are drawn as normal edges having 

more than 1 labels.) 

In this way, implicitly, the alphabet is also given by the graph (only those letters are used in the automaton 

which appear as labels on the edges). 

In order to provide even more clarification, we present an example. We describe the same nondeterministic 

automaton both by a table and by a graph. 

Example 21. Let an automaton be defined by the following Cayley table: 
 

T Q → q0 q 1 ⊂q2⊃ ⊂q3⊃ 

a q 1 q 1 q 2, q3 - 

b q 0 q 0 - q 3 

c q 0 q 2 - q 1,q2,q3 



 Regular Languages and Finite 

Automata 
 

 21  
Created by XMLmind XSL-FO Converter. 

Figure 2.2. shows the graph representation of the same automaton. 

2.2. ábra - The graph of the automaton of Example 21 [20]. 

 

These automata are used to accept words, and thus, languages: 

Definition 16. (Language accepted by finite automaton). Let A = (Q, T, q0, δ, F) be an automaton and w ∈  T* be 

an input word. We say that w is accepted by A if there is a run of the automaton, i.e., there is an alternating 

sequence q0 t1 q1 ... qk-1 tk qk of states and transitions, that starts with the initial state q0, (qi∈  Q for every i, they 

are not necessarily distinct, e.g., qi = qj is allowed even if i ≠ j) and for every of its transition ti of the sequence 

• ti : qi∈  δ (qi-1,ai) in nondeterministic cases 

• ti : qi = δ (qi-1,ai) in deterministic cases, 

where a 1 ... ak = w, and qk∈  F. This run is called an accepting run. 

All words that A accepts form L(A), the language accepted (or recognized) by the automaton A. 

Example 22. Let A be the automaton drawn in the next animations. We show a non-accepting run of a non-

deterministic automaton A (with λ-transitions) in Animation 3. [21] 

Animation 3. 

 

However the word 1100 is accepted by A, since it has also an accepting run that is shown in Animation 4. [21] 

Animation 4. 

exa_FA1
anim1_autom
anim2_autom
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These finite automata are also called finite-state acceptors or Rabin-Scott automata. Let us see the language 

class(es) that can be accepted by these automata. 

Two automata are equivalent if they accept the same language. 

We have defined four types of finite automata and by the definition it seems that the latter ones are more 

restricted than the former ones. However, it turns out that all four versions characterize the same language class: 

Theorem 4. For every finite automaton there is an equivalent (completely defined) deterministic finite 

automaton. 

Proof. The proof is constructive. Let A = (Q, T, q0, δ, F) be a nondeterministic finite automaton (allowing λ-

transitions). Let us define, first, the λ-closure of an arbitrary set q' of states. 

• let U1 ({q'}) = {q'}, 

• let Ui+1 ({q'}) = Ui (q') ∪  {p ∈  Q∣ ∃ r ∈  Ui (q') such that p ∈  δ (r,λ)}, for i > 1. 

Since Q is finite, there is a value k such that Uk (q') = Uk+1 (q'), let us denote this set by U(q'). Practically, this set 

contains all the states that can be reached starting from a state of q' by only λ-transitions. 

Now we are ready to construct the automaton A' = (Q', T, U (q0), δ', F'), where Q' = 2Q, F' ⊂ Q' includes every 

element q' ∈  Q' such that q' ∩ F ≠ ∅ . The transition function δ' is defined as follows:  

for any a ∈  T and q' ∈  Q'. Actually while this can be done for all subsets of Q, subsets which cannot be reached 

by transitions from U (q0) by δ' can be deleted (these useless states are not needed). 

One can observe that A' is a completely defined deterministic automaton. Also, every run of A has an equivalent 

run of A', in fact, A' simulates every possible run of A on the input at the same time. Conversely, if A' has an 

accepting run, then A also has at least one accepting run for the same input. Therefore, A and A' accept the same 

language, consequently they are equivalent. 
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QED 

Our previous proof gives an algorithm for the ''determinization'' of any finite automaton having only states 

reachable from the initial state as we will see it in details in Example 23. [23] Note that even if we deleted these 

useless states, the automaton may not be minimal in the sense that the same language can be accepted by a 

completely defined deterministic finite automaton having less number of states than our automaton. 

Example 23.  Let a nondeterministic automaton be defined by the following Cayley table (note that in this 

algorithm the rows refer to the states of the automaton and the columns to the letters of the alphabet, and in this 

automaton λ-transitions are allowed): 
 

Q T a b λ 

→ q0 q 0,q1 q 2 - 

q 1 q 1 - q 2 

⊂q2⊃ q 0 q 1 - 

We start with the λ-closure of the initial state U (q0) = {q0}. This set will count as the initial state of the new 

automaton: let it be in the first row of the table of this new automaton. Let us see which sets of states can be 

obtained from this set by using the letters of the alphabet: 

• by letter a the set {q0, q1} is obtained, however, its λ-closure is {q0, q1, q2}; 

• by letter b the set {q2} is obtained and its λ-closure is {q2}. 

Let us write these two sets in the second and third row of the table. Now let us see what sets of states can be 

reached from these sets. First, let us see the set {q0, q1, q2}. 

• by letter a the set {q0, q1} is obtained, however, its λ-closure is {q0, q1, q2}; 

• by letter b the set {q1, q2} is obtained and its λ-closure is {q1, q2}. 

Since this latter set is not in the table yet, it is added to the fourth row. Now let us see the set {q2}. 

• by letter a the set {q0} is obtained, and its λ-closure is {q0}; 

• by letter b the set {q1} is obtained and its λ-closure is {q1, q2}. 

Since both of these two sets are already in the table we do not need to add a new row. Finally, let us analyse the 

set {q1,q2} (that is the last row of the table). 

• by letter a the set {q0, q1} is obtained, and its λ-closure is {q0, q1, q2}; 

• by letter b the set {q1} is obtained and its λ-closure is {q1, q2}. 

These sets are in the table. So the table is filled. The initial state of the new deterministic automaton is {q0}. The 

final states are: {q0, q1, q2}, {q2}, and {q1, q2}. The next table shows the resulting deterministic finite automaton: 
 

Q T a b 

→ {q0} {q0, q1, q2} {q2} 

⊂{q0, q1, q2}⊃ {q0, q1, q2} {q1, q2} 

⊂{q2}⊃ {q0} {q1, q2} 

⊂{q1, q2}⊃ {q0, q1, q2} {q1, q2} 

Example 24.  Animation 5. [23] shows an example how to obtain a completely defined deterministic automaton 

that is equivalent to the original nondeterministic automaton. 

Animation 5. 

exa_detaut
anim3_detaut
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Let A = (Q, T, q0, δ, F) be a deterministic finite automaton such that each of its states is reachable from its initial 

state (there are no useless states). Then we can construct the minimal deterministic finite automaton that is 

equivalent to A in the following way: 

Let us divide the set of states into two groups obtaining the classification C1 = {F, Q\F}. (We denote the class 

where state q is by C1[q].) 

Then, for i > 1 the classification Ci is obtained from Ci-1: the states p and q are in the same class by Ci if and only 

if they are in the same class by Ci-1 and for every a ∈  T they behave similarly: δ (p,a) and δ (q,a) are in the same 

class by Ci. 

Set Q is finite and, therefore, there is a classification Cm such that it is the same as Cm+1. 

Then, we can define the minimal completely defined deterministic automaton that is equivalent to A: its states 

are the groups of the classification Cm, the initial state is the group containing the initial state of the original 

automaton, the final states are those groups that are formed from final states of the original automaton, formally: 

(Cm, T, Cm [q0], δCm, FCm), 

where δCm(Cm [q], a) = Cm [δ (q,a)] for every Cm [q] ∈  Cm, a ∈  T and FCm = {Cm [q]∣ q ∈  F}. 

It may happen that there are some words w ∈  T* that are not prefixes of any words of a regular language L. 

Then, the minimal completely defined deterministic automaton contains a sink state, that is the state where the 

word w and other words with the same property lead the automaton. When we want to have a minimal 

deterministic finite automaton for these languages, allowing partial (not completely defined) finite automata, 

then we may delete this sink state (with the transitions into it) by decreasing the number of the states by one. 

Let us see yet another example. When applying the minimization algorithm it is more convenient to put the 

states to the 0th row of the table and the letters of the alphabet to the 0th column of the table. 

Example 25.  Let the deterministic automaton A be given as follows: 
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T Q → q0 q 1 ⊂q2⊃ q 3 ⊂q4⊃ ⊂q5⊃ ⊂q6⊃ 

a q 2 q 5 q 1 q 1 q 2 q 1 q 0 

b q 1 q 0 q 3 q 4 q 5 q 3 q 2 

Give a minimal deterministic automaton that is equivalent to A. 

Solution: 

Before applying the algorithm we must check which states can be reached from the initial state: from q 0 one 

can reach the states q 0, q2, q1, q3, q5, q4. Observe that the automaton cannot enter state q6, therefore, this state 

(column) is deleted. The task is to minimize the automaton 
 

T Q → q0 q 1 ⊂q2⊃ q 3 ⊂q4⊃ ⊂q5⊃ 

a q 2 q 5 q 1 q 1 q 2 q 1 

b q 1 q 0 q 3 q 4 q 5 q 3 

by the algorithm. When we perform the first classification of the states C 1 = {Q1, Q2} by separating the 

accepting and non-accepting states: Q1 = {q2, q4, q5}, Q2 = {q0, q1, q3} then we have: 
 

 Q Q 1 Q 2 

T  ⊂q2⊃ ⊂q4⊃ ⊂q5⊃ →q0 q 1 q 3 

a Q 2 Q 1 Q 2 Q 1 Q 1 Q 2 

b Q 2 Q 1 Q 2 Q 2 Q 2 Q 1 

Then C 2 = {Q11, Q12, Q21, Q22} with Q11 = {q2, q5}, Q12 = {q4}, Q21 = {q0, q1}, Q22 = {q3}. Then according to this 

classification we have 
 

 Q Q 11 Q 12 Q 21 Q 22 

T  ⊂q2⊃ ⊂q5⊃ ⊂q4⊃ →q0 q 1 q 3 

a Q 21 Q 21 Q 11 Q 11 Q 11 Q 21 

b Q 22 Q 22 Q 11 Q 21 Q 21 Q 12 

Since C 3 = C2we have the solution, the minimal deterministic finite automaton equivalent to A: 
 

T Q ⊂Q11⊃ ⊂Q12⊃ →Q21 Q 22 

a Q 21 Q 11 Q 11 Q 21 

b Q 22 Q 11 Q 21 Q 12 

We conclude this subsection by a set of exercises. 

Exercise 17. Give a finite automaton that accepts the language of words that contain the consecutive substring 

baab over the alphabet {a,b}. 

Exercise 18. Let the automaton A be given in a Cayley table as follows: 
 

T Q →q0 q 1 q 2 q 3 ⊂q4⊃ 

0 q 0 q 1 q 2 q 4 q 1 

1 q 1 q 2 q 3 q 3 q 4 

Draw the graph of A. What is the type of A (e.g., nondeterministic with allowed λ-transitions)? 

Exercise 19.  The graph of the automaton A is given in Figure 2.3. 



 Regular Languages and Finite 

Automata 
 

 26  
Created by XMLmind XSL-FO Converter. 

2.3. ábra - The graph of the automaton of Exercise 19 [25]. 

 

Describe A by utilizing a Cayley table. What is the type of A (e.g., deterministic with partially defined transition 

function)? What is the language that A recognizes? 

Exercise 20. Let a nondeterministic automaton with λ-transitions, A, be defined by the following Cayley table: 
 

Q T a b c λ 

→q0 q 0, q3 q 1 - - 

⊂q1⊃ q 1 q 3 - ⊂q2⊃ 

q 2 - q 0 q 2 - 

q 3 q 1 q 1 q 2 q 0 

Give a completely defined deterministic automaton that is equivalent to A. 

Exercise 21. Let a nondeterministic automaton A be defined by the following table: 
 

Q T 0 1 

→q0 q 0, q1 q 1 

q 1 q 1 q 2, q3 

q 2 q 0 - 

⊂q3⊃ q 3 q 0, q1, q2 

Give a completely defined deterministic automaton that accepts the same language as A. 

Exercise 22. Let a nondeterministic automaton A be defined by the graph shown in Figure 2.4. 

2.4. ábra - The graph of the automaton of Exercise 22. [26] 

 

Give a completely defined deterministic automaton that accepts the same language as A. 

Exercise 23. Let the deterministic automaton A be given as follows: 
 

T Q →q0 q 1 ⊂q2⊃ q 3 ⊂q4⊃ ⊂q5⊃ q 6 ⊂q7⊃ 

a q 6 q 3 q 1 q 7 q 1 q 0 q 4 q 1 

b q 4 q 7 q 1 q 2 q 3 q 1 q 5 q 6 

c q 5 q 2 q 6 q 1 q 3 q 6 q 0 q 6 

Give a minimal deterministic automaton that is equivalent to A. 

Exercise 24. Let the deterministic automaton A be given by the following table. 
 

T Q →q0 q 1 ⊂q2⊃ q 3 q 4 q 5 q 6 ⊂q7⊃ q 8 

0 q 3 q 5 q 7 q 0 q 2 q 0 q 4 q 2 q 5 

1 q 8 q 1 q 3 q 2 q 6 q 7 q 3 q 5 q 2 

Give a minimal deterministic automaton that is equivalent to A. (Hint: check first which states can be reached 

from the initial state.) 

Exercise 25. Let a nondeterministic automaton A be defined by the graph shown in Figure 2.5. 

exe_FA
det_exe
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2.5. ábra - The graph of the automaton of Exercise 25. [26] 

 

Give a minimal deterministic automaton that is equivalent to A. 

3.1. 2.3.1. Synthesis and Analysis of Finite Automata 

Now we are going to show that exactly the class of regular languages can be described with the help of the finite 

automata. First we show that every regular language (type 3 language) can be accepted by finite automata. 

Theorem 5. Every language generated by a regular grammar is accepted by a finite automaton. 

Proof. The proof is constructive. Let G = (N, T, S, P) be a regular grammar in normal form. Then, let the finite 

automaton 

A = (Q, T, q0, δ,F) 

be defined as follows: 

let Q = N ∪  {F'} (where F' ∉  N), 

q 0 = S. 

Let the transition function δ be defined by the elements of P: let B ∈  δ (A,a) if A → aB ∈  P; and let F' ∈  δ (A,a) 

if A → a ∈  P. Further, let the set of accepting states be {F'} if S →λ is not in P and let F = {F',S} if S → λ ∈  P. 

One can see that the successful derivations in the grammar and the accepting runs of the automaton have a one-

to-one correspondence. 

QED. 

Example 26. Let 

G = ({S, A, B, C}, {a, b, c}, S, 

 

{  S → abbA, 

   S → baaB, 

   S → λ, 

   A → aS, 

   A → aC, 

   B → bC, 

   C → aS, 

   C → cc   

})  

generating the language L(G). Give a finite automaton that accepts the language L(G). 

Solution: 

First we must exclude the rules containing more than 1 terminals, as we did in the proof of Theorem 2. [13] In 

this way the grammar 

G' =({S, A, B, C, X1, X2, X3, X4, X5}, {a, b, c}, S, 

 

{  S → aX1, 

   X1 → bX2, 

   X2 → bA, 

   S → bX3, 

   X3 → aX4, 

   X4 → aB, 

   S → λ, 

   A → aS, 

min_exe
thm_regNF
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   A → aC, 

   B → bC, 

   C → aS, 

   C → cX5, 

   X5 → c 

})  

can be obtained. Then, we can draw the graph of automaton A as it can be seen in Figure 2.6. 

2.6. ábra - The graph of the automaton of Example 26. [27] 

 

Now we are going to show that the class of finite automata cannot accept more languages than the class that can 

be described by regular expressions. 

Theorem 6. Every language accepted by a finite automaton can be described by a regular expression. 

Proof. The proof is constructive. We present an algorithm that shows how one can construct a regular 

expression from a finite automaton. We can restrict ourselves to deterministic finite automaton, since we have 

already seen that they are equivalent to the nondeterministic finite automata. Let the states of a deterministic 

finite automaton be 1,2,... for the sake of simplicity, i.e., let A = ({1,... n}, T, 1, δ, F) be given. Let  denote 

the regular expression that describes the language accepted by the automaton ({1,...,k} ∪  {i,j}, T, i, δ', {j}), 

where δ' is the restriction of δ containing only transitions from the set {i} ∪  {1,...,k} to the set {1,...,k} ∪  {j} (1 

≤ i,j ≤ n, 0 ≤ k ≤ n and 1,..., 0 means the empty set). 

Then,  describes the regular language that is given by direct transition(s) from state i to j. Therefore,  

gives the language {λ} ∪  {a∣ δ (i,a) = i} (this language contains the empty word and possibly some one-letter-

long words, i.e., it is described by a basic regular expression or finite union of basic regular expressions). 

Further,  describes the language {a∣ δ (i,a) = j} if i ≠ j (it can contain some one-letter-long words). These 

regular expressions can easily be obtained and proven to describe the languages mentioned. 

Now we use induction on the upper index: 

 

for 1 ≤ k ≤ n. This expression can be seen intuitively: starting from state i we could reach state j by using the 

first k states in our path, either without using state k (the part  refers to this case) or by a path reaching state 

, and then reaching it arbitrarily many times (including 0 times: , and finally reaching state j 

from state  

Finally,  gives a regular expression that describes exactly the language accepted by A. In this way it is 

constructively proven that for any finite automaton one can construct a regular expression that describes the 

language accepted by the automaton. 

QED. 

Example 27. Let the Cayley table of automaton A be given as follows: 
 

T Q →q1 ⊂q2⊃ ⊂q3⊃ 

a q 2 q 3 q 1 

b q 3 q 2 - 

exa_gram_aut
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Describe the accepted language L(A) by a regular expression. 

Solution: 

Let us describe the regular expressions  for i,j ∈  {1,2,3} by using the transitions of A. 
 

   

   

   

Now by using the inductive step we compute  for i,j ∈  {1,2,3}. 

•  

•  

•  

•  

•  

•  

•  

•  

•  

Now we can continue by computing the expressions  

•  

•  

•  

•  

•  

•  
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•  

•  

•  

To describe L(A) we need  Let us compute it: 

•  

•  

Thus, the regular expression 

(ab*a + b)(aab*a + ab)*aab* + ab* + (ab*a + b)(aab*a + ab)* = (ab*a + b)(aab*a + ab)* (λ + 

aab*) + aab* 

describes L(A). The problem is solved. 

Now we have proven that the three concepts we have discussed in this chapter, the regular grammars, regular 

expressions and finite automata are equivalent in the sense that each of them characterize exactly the class of 

regular languages (see Figure 2.7). 

2.7. ábra - The equivalence of the three types of descriptions (type-3 grammars, regular 

expressions and finite automata) of the regular languages. 

 

The aim of the analysis of a finite automaton is the task to describe the accepted language in another way, 

usually, by regular expressions. The synthesis of a finite automaton is the construction of the automaton that 

accepts a regular language that is usually given by a regular expression. Kleene has proven the equivalence of 

finite automata and regular expressions. 

The minimization algorithm is very important, since the minimal, completely defined, deterministic finite 

automaton is (the only known) unique identification of a regular language. In this way, we can decide if two 

regular languages (given by regular expressions, grammars or automata) coincide or not. 

We close this subsection by a set of exercises. 

Exercise 26. Let 

G = ({S, A, B}, {0,1}, S, 

 

{  S → 000A, 

   S → 111B, 

   A → λ, 

   A → 0S, 

   A → 11, 

   B → 1S, 

   B → 000  

})  

generating language L(G). Give a finite automaton that accepts language L(G). (Hint: first transform the 

grammar to normal form.) 

Exercise 27. Let 
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G = ({S, A, B, C}, {a,b}, S, 

 

{  S → aaaA, 

   S → bbB, 

   S → C, 

   A → S, 

   A → baB, 

   A → ba, 

   B → S, 

   B → C, 

   B → b, 

   B → λ, 

   C → B, 

   C → aA 

})  

generating language L(G). Give a finite automaton that accepts language L(G). 

Exercise 28. Let 

G = ({S, A, B}, {a, b, c}, S, 

 

{  S → abA, 

   S → bccS, 

   A → bS, 

   A → c, 

   A → B, 

   B → S, 

   B → aA,  

   B → bcc, 

   B → λ 

})  

generating language L(G). Give a finite automaton that accepts language L(G). 

Exercise 29. Let the automaton A be defined by the following table: 
 

T Q →q1 q 2 ⊂q3⊃ 

0 q 1 q 3 q 3 

1 q 2 q 2 q 1 

Give a regular expression that describes the language accepted by automaton A. 

Exercise 30. Let automaton A, accepting language L(A), be defined by the Cayley table: 
 

T Q →⊂q1⊃ q 2 ⊂q3⊃ 

a q 1 q 3 - 

b - q 2 q 1 

c q 2 q 2 - 

Give a regular expression that describes language L(A). 

Exercise 31. Let automaton A be as it is shown in Figure 2.8. Give a regular expression that defines the same 

language as A. 

2.8. ábra - The graph of the automaton of Exercise 31. [31] 

 

3.2. 2.3.2. The Word Problem 

exe_autreg
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The word problem is to decide whether any given word w belongs to a given regular language (or not). This can 

be done very efficiently by using a deterministic finite automaton that accepts the given language. (Such an 

automaton can be constructed from a regular expression, first by Theorem 3. [18] and then/or from a grammar 

by Theorem 5. [27] and then/or from a nondeterministic finite automaton by Theorem 4. [22]) Reading the word 

w can be done by ∣ w∣  steps, and then, if the automaton accepts w, i.e., it arrived at an accepting state in this 

run, then w is an element of the language. Otherwise, (if there were some undefined transitions and the 

automaton gets stuck, or by reading the word finally a non accepting state is reached) w does not belong to the 

given regular language. The decision on an input word of length n is done in at most n steps, therefore, this is a 

real time algorithm (i.e., linear time algorithm with coefficient 1). There is no faster algorithm that can read the 

input, so the word problem for regular languages can be solved very efficiently. 

Exercise 32. Let automaton A be given as it can be seen in Figure 2.9. 

2.9. ábra - The graph of the automaton of Exercise 32. [32] 

 

 

           

Decide whether the words 

 

   abab,  

   baba,  

   aaaabbb,  

   bbbaaaab,  

   baabaabaabb and  

   aaaabbbababaaa are in L(A).  

 

         

Exercise 33. Let the nondeterministic automaton A be defined by the Cayley table: 
 

Q T 0 1 λ 

→q0 q 1, q4 q 5 q 2 

q 1 q 3 q 1, q4 - 

q 2 q 1 q 2 - 

⊂q3⊃ - - q 2 

q 4 - q 4 - 

thm_regopclosure
thm_gram_aut
thm_determ
exe_word
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Q T 0 1 λ 

⊂q5⊃ q 5 q 5 q 0 

Decide which of the words 0011, 0101, 0110, 01110010, 100, 1011110 belong to the accepted language of A. 

Exercise 34. Let 

G = ({S, A, B}, {a, b, c}, S, 

 

{  S → abcS, 

   S → bcA, 

   S → acB, 

   A → aS, 

   A → a, 

   B → bS, 

   B → bcc, 

   S → ccc 

})  

be a regular grammar. Decide which of the following words can be generated by G: 

 

           

   abcccc,  

   acbcc,  

   acbbacbccc, 

   bca,  

   bcacacc,  

   bcaabcacbcc,  

   ccc,  

   cccacbc. 

 

         

Exercise 35. Given the regular language 

a * + (a+b)*baba (a+b)*), 

decide if the following words are in the described language or not: 

 

           

   aaaaa,  

   aaabaa,  

   ababa,  

   abbabaaba.  

 

         

4. 2.4. Properties of Regular Languages 

In the next part of this section we concentrate on the closure properties of the class of regular languages. 

4.1. 2.4.1. Closure Properties 

By the constructive proof of Theorem 3 [18], it is also shown that the class of regular languages is closed under 

the regular operations. Now let us consider the set theoretical operations: intersection and complement. 

Theorem 7. The class of regular languages is closed under intersection and complement. 

Proof. The proof is constructive in both cases, and deterministic finite automata are used. Let us start with the 

complement. Let a regular language be given by a complete deterministic finite automaton A = (Q, T, q0, δ, F) 

that recognizes it. This automaton has exactly one run for every word of T*, and accepts a word if this run is 

thm_regopclosure


 Regular Languages and Finite 

Automata 
 

 34  
Created by XMLmind XSL-FO Converter. 

finished in an accepting state. Then  recognize exactly those words that are not accepted 

by A, and thus the finite automaton  accepts the complement of the original regular language. 

For the intersection, let two regular languages L1 and L2 be given by complete deterministic automata A = (Q, T, 

q0, δ,F) and A' = (Q', T, q'0, δ', F') that recognize them, respectively. Then, let A∩ = (Q × Q', T, (q0, q'0), δ'', F× 

F'), with transition function δ'' ((q,q'), a) = (δ(q,a), δ' (q',a)) for every q ∈  Q, q' ∈  Q' and a ∈  T. The states are 

formed by pairs of the states of the automata A and A'. Thus, A∩ simulates the work of these two automata 

simultaneously and accepts exactly those words that are accepted by both of these machines. Thus the 

intersection of the languages L1 and L2 is accepted by a finite automaton, and thus it is also a regular language. 

QED. 

Example 28. Let the automaton A and A' accept the languages L(A) and L(A'), respectively. Let them be defined 

in the following way: the table of A as shown below. 
 

T Q →q1 q 2 ⊂q3⊃ 

a q 3 q 2 q 3 

b q 2 q 2 q 3 

the table of A' as shown below 
 

T Q' →q'1 ⊂q'2⊃ 

a q' 1 q' 1 

b q' 2 q' 2 

Give an automaton that accepts the complement of L(A) and an automaton that accepts the intersection of L(A) 

and L(A'). What are the languages accepted by these automata? 

Solution: 

Let us take the automaton that accepts the complement of L(A) by interchanging the role of accepting and non-

accepting states in A. Let  be defined by the following Cayley table: 
 

T Q →⊂q1⊃ ⊂q2⊃ q 3 

a q 3 q 2 q 3 

b q 2 q 2 q 3 

Now let us construct A ∩ by using the Cartesian product of the sets of states Q and Q'. 
 

T Q →(q1, q'1) (q2, q'1) (q3, q'1) (q1, q'2) (q2, q'2) ⊂(q3, q'2)⊃ 

a (q3, q'1) (q2, q'1) (q3, q'1) (q3, q'1) (q2, q'1) (q3, q'1) 

b (q2, q'2) (q2, q'2) (q3, q'2) (q2, q'2) (q2, q'2) (q3, q'2) 

Actually, A accepts the language a(a+b)*(words starting by letter a), and A' accepts the language (a+b)*b 

(words that ends with letter b), the automaton  accepts the language λ + b(a+b) * (words do not start with 

letter a over the alphabet {a,b}), while A∩ accepts the language a (a+b)*b (words starting with a and ending 

with b). 

Exercise 36. Let the table of A be 
 

T Q →q1 q 2 ⊂q3⊃ 

0 q 1 q 3 q 2 

1 q 2 q 2 q 2 
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and the table of A' be 
 

T Q' →q'1 ⊂q'2⊃ ⊂q'3⊃ 

0 q' 3 q' 2 q' 3 

1 q' 2 q' 1 q' 2 

Give an automaton that accepts the intersection of the languages accepted by A and A'. 

Exercise 37. Let the language L(A) be defined as the accepted language of the automaton A as it is shown in 

Figure 2.10. 

2.10. ábra - The graph of the automaton of Exercise 37. 

 

Give an automaton that accepts the complement of L(A). (Hint: first the equivalent completely defined 

deterministic automaton must be obtained.) 

Exercise 38. Let the table of A be 
 

T Q' →q1 q 2 ⊂q3⊃ ⊂q4⊃ 

a q 1 q 3 q 1 q 1 

b q 1 q 4 q 2 q 2 

c q 2 q 4 q 4 q 3 

and the table of A' be 
 

T Q' →⊂q'1⊃ q' 2 

a q' 1 q' 2 

b q' 2 q' 1 

c q' 2 q' 1 

They accept the languages L(A) and L(A'), respectively. 

Give automata that accept the complement of L(A) and L(A'). Give an automaton that accepts L(A) ∩ L(A'). 

4.2. 2.4.2. Myhill-Nerode theorem 

In the next part we show an if and only if characterization of the class of regular languages. 

Let us define congruence relations on T* with the following property: for every u, v, w ∈  T* if u ∼ v, then uw ∼  

vw. These relations are called right-congruences. A congruence relation is of finite index, if the number of 

classes of T* is finite. 

Theorem 8. (Myhill-Nerode theorem). A language over the alphabet T is regular if and only if there is a finite 

index right-congruence relation on T* such that the language is obtained as (the union of) some of the classes 

induced by the relation. 

Let a language L be given. Roughly speaking two words, u and v are equivalent if their every possible 

continuation w behaves in the same manner, i.e., uw ∈  L if and only if vw ∈  L. If this equivalence relation 

induces finitely many classes on T*, then, and only then, L is regular. 

Actually, this fact is also related to the minimal, completely defined, accepting deterministic finite automaton 

(that uniquely identifies the given regular language): the partitions of T* can be assigned to the states of the 

minimal automaton: the partition containing the empty word λ is assigned to the initial state; those partitions that 

contain words such that their empty continuation is in L are assigned to the accepting states. The transitions can 
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also be easily defined by using the partitions, by checking in which partition the words are that are given by the 

previous one by extending it with exactly one letter. 

Now, we are going to give an example for how this theorem can be used to show that some of the languages are 

not regular. 

Example 29. Let us analyze language L = {an bn∣ n ∈  ℕ}. Let us partition the words of a* into classes: assume 

that ak and am are in the same class, i.e., ak ∼ am. Then, for each possible continuation (w ∈  {a,b}*) they behave 

in the same manner, e.g., for bk the word akbk ∈  L and thus, ambk ∈  L also. But it can only be if m = k, and so 

every element of a* is equivalent to only itself and not to any other element of this set. Therefore, language L 

induces an infinite index right-congruence relation, thus L is not regular. 

Exercise 39. Show that the language containing exactly the words having the same number of 0's and 1's (over 

the alphabet {0,1}) is not regular. 

(Apply the Myhill-Nerode theorem.) 

Exercise 40. Show that the language L = {an2∣ n ∈  ℕ} (over the alphabet {a}), i.e., the unary words having 

square number length, is not regular. 

(Apply the Myhill-Nerode theorem.) 

5. 2.5. Finite Transducers 

Transducers are machines which do not only have input, but output as well. One can imagine them as automata 

with two tapes: an input and an output tape. In this book, we consider only the simplest transducers: they are 

finite and they give an output letter as a response to every input letter. In this section, we briefly describe two 

types of finite state transducers. 

5.1. 2.5.1. Mealy Automata 

We start by giving the formal definition of Mealy automata. 

Definition 17. A Mealy automaton is an ordered sextuple A = (Q, T, V, q 0, δ, μ), where Q, T, q0, δ are the same 

as at the completely defined deterministic finite state acceptors, i.e., Q is the finite set of states, T is the input 

alphabet, q0∈  Q is the initial state, δ : Q × T → Q is the transition function; and V is the output alphabet and μ 

: Q × T → V is the output function. 

Notice that there are no final (or accepting) states. These automata are not used to accept languages. 

A Mealy automaton can be defined by a Cayley table or by a graph. When a Cayley table is used to describe a 

Mealy automaton, then both the values δ(q,a) and μ(q,a), as pairs are written to the cell identified by the state q 

and by the letter a. When a graph is used to describe a Mealy automaton, then we can put a/x to an arrow 

meaning that the transition represented by the arrow is performed by reading an input letter a, while an output 

letter x ∈  V is written to the output tape. Here is an example. 

Example 30. Let the Mealy automaton A be given by the following Cayley table 
 

T Q →q1 q 2 q 3 q 4 

a (q4, x) (q3, y) (q1, y) (q2, x) 

a (q1, y) (q1, x) (q2, x) (q2, y) 

a (q1, x) (q1, x) (q4, y) (q3, y) 

The same automaton given by graph can be seen in Figure 2.11. 

2.11. ábra - The graph of the Mealy automaton of Example 30. [36] 

 

exa_Mealy
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Let us make some sample runs of the automaton: 

• Let the input be abcabc, then the output is xyxxyx. 

• Let the input be aaaabbbb, then the output is xxyyyyyy. 

• Let the input be ccabcabc, then the output is xxxyxxyx. 

• Let the input be abcbbccabac, then the output is xyxyyxxxyyy. 

Example 31.  Animation 6. [37] shows an example of a Mealy automaton, how it produces output for a given 

input. 

Animation 6. 

 

We say that two Mealy automata are equivalent if they assign the same output word for every input word u ∈  T*. 

The number of states of equivalent automata can be various. However, there is particular Mealy automaton for 

each equivalent class that has a minimal number of states. This automaton can be obtained from any automaton 

of the class by the minimization algorithm. 

Now we present the minimization algorithm for Mealy automata. First, as with the finite state recognizers, we 

should check which states can be reached from the initial state. The states that cannot be reached can simply be 

erased from the automaton (table or graph) together with the transitions from them. 

When we have a Mealy automaton, such that each of its states is reachable from the initial state with some input 

words (i.e., reading the given input word the automaton arrives to this particular state), then we can start an 

analogous algorithm that was used for minimizing finite state recognizers. 

Only the initial step of the algorithm differs from the one shown previously: since we have no accepting states, 

the initial classification is done in another way. Let two states p and q be in the same class, i.e., C1[p] = C1[q] if 

and only if for every input letter a ∈  T the equality μ(p,a) = μ(q,a) is fulfilled. 

anim4_autom
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The other steps of the algorithm are similar to the previously described algorithm: based on the previous 

classification the next classification is obtained by separating those states for which there is an input letter such 

that the transition function with this letter brings them to different classes. 

Let us see an example. 

Example 32. Let the Mealy automaton A be given as follows: 
 

T Q →q1 q 2 q 3 q 4 q 5 q 6 

a (q2, x) (q1, z) (q6, x) (q5, z) (q4, x) (q5, x) 

b (q3, y) (q2, y) (q4, y) (q4, y) (q3, y) (q2, y) 

Give the minimal Mealy automaton that is equivalent to A. 

Solution: 

One can easily check that every state can be reached from the initial state. Then classification C 1 = {Q1, Q2}, 

where Q1 = {q1, q3, q5, q6} (having output x for input a and output y for input b) and Q2 = {q2, q4} (having output 

z for input a and output y for input b). Then, the transition function reflecting this classification is as follows: 
 

 Q Q 1 Q 2 

T  →q1 q 3 q 5 q 6 q 2 q 4 

a Q 2 Q 1 Q 2 Q 1 Q 1 Q 1 

b Q 1 Q 2 Q 1 Q 2 Q 2 Q 2 

Then, Q 1 is divided into two subgroups in the classification C 2 = {Q11, Q12, Q2} with Q11 = {q1, q5} and Q12 = {q3, 

q6}. (Q2 = {q2, q4} remains the same group.) The transition function reflecting these groups is as follows: 
 

 Q Q 11 Q 12 Q 2 

T  →q1 q 5 q 3 q 6 q 2 q 4 

a Q 2 Q 2 Q 11 Q 12 Q 11 Q 11 

b Q 12 Q 12 Q 2 Q 2 Q 2 Q 2 

Only Q 12 is divided (to its elements) and thus C 3 = {Q11, Q121, Q122, Q2} with Q121 = {q3} and Q122 = {q5}. Then the 

transitions become: 
 

 Q Q 11 Q 121 Q 122 Q 2 

T  →q1 q 5 q 3 q 6 q 2 q 4      

a Q 2 Q 2 Q 11 Q 122 Q 11 Q 11      

b Q 121 Q 121 Q 2 Q 2 Q 2 Q 2      

Since C 4 = C3, we can give the minimal Mealy automaton (writing also the values of the output function into the 

table): 
 

T Q →Q11 Q 121 Q 122 Q 2 

a (Q2, x) (Q11, x) (Q122, x) (Q11, z) 

b (Q121, y) (Q2, x) (Q2, y) (Q2, y) 

Exercise 41. Let the Mealy automaton A be given with its table as follows: 
 

T Q →q0 q 1 q 2 q 3 

0 (q0, a) (q3, a) (q1, b) (q2, b) 
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T Q →q0 q 1 q 2 q 3 

1 (q1, b) (q1, a) (q2, b) (q2, a) 

Draw the graph of automaton A. 

Exercise 42. Let the Mealy automaton A be given by its graph as it is shown in Figure 2.12. 

2.12. ábra - The graph of the Mealy automaton of Exercise 42. [39] 

 

Describe the same automaton with a Cayley table. 

What is the output of this automaton for the input strings aaabb, abbba, bbbaabb and aabbbaabab? 

Give a minimal Mealy automaton that is equivalent to A. 

Exercise 43. Give a minimal Mealy automaton that is equivalent to the following one: 
 

T Q →q1 q 2 q 3 q 4 q 5 q 6 q 7 q 8 

a (q8, 0) (q3, 1) (q8, 0) (q1, 1) (q8, 0) (q4, 0) (q3, 1) (q5, 1) 

b (q2, 1) (q1, 0) (q7, 0) (q2, 1) (q7, 1) (q2, 1) (q6, 0) (q3, 1) 

Exercise 44. Give a minimal Mealy automaton that is equivalent to the one defined by the following table. 
 

T Q →q1 q 2 q 3 q 4 q 5 

a (q2, x) (q2, y) (q2, x) (q5, y) (q4, y) 

b (q4, x) (q3, x) (q1, x) (q3, x) (q3, x) 

c (q5, y) (q5, x) (q1, y) (q5, x) (q2, x) 

5.2. 2.5.2. Moore Automata 

In this subsection another type of finite transducers are investigated. 

Definition 18. A Moore automaton is an ordered sextuple A = (Q, T, V, q0, δ, η), where Q, T, V, q0, δ are the 

same as at the Mealy automata, and η : Q × V is the output function. 

Notice that the difference between the Mealy and the Moore automata is due to their output function. While with 

the Mealy automata the output is produced during the transition (depending on both the state that the automaton 

was in and on the read input letter), at the Moore automata the output letter is produced after the transition is 

finished and the output letter depends only on the state the automaton reached by the transition. 

The Moore automata can also be defined by Cayley table and by graph. Since with the Moore automata the 

output depends only on the state the automaton has reached, the output letters are written to the states (above the 

states, when the states are in the 0th row of table) and inside the circles of the states as pairs containing the state 

and the output assigned to the state on the graphs. Here is an example: 

Example 33. Let the Moore automaton A be given by its graph as it is shown in Figure 2.13. 

2.13. ábra - The graph of the Mealy automaton of Exercise 33. [39] 

 

Describe the same automaton using a Cayley table. Give the output for input strings 

 

           

aabb,  

exeMeal2
exaMoor
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baabaa and  

abaababb. 

 

         

Solution: 
 

V 0 1 0 1 

T Q →q0 q 1 q 2 q 3 

a q 2 q 3 q 0 q 3 

b q 1 q 2 q 3 q 2 

The example runs give the outputs as follows: 

• For input aabb the output is 0010. 

• For input baabaa the output is 111000. 

• For input abaababb the output is 01110010. 

Example 34.  Animation 7. [40] shows a Moore automaton at work. 

Animation 7. 

 

Now we can generalize the equivalence relation between finite transducers: a Mealy/Moore automaton A is 

equivalent to a Mealy/Moore automaton A' if and only if for every input string u ∈  T* they produce the same 

output string. 

The Moore automata can also be minimized and its algorithm is very similar to the previously described 

minimization algorithms. The only difference is that in this case the first classification is done based on the 

output letters assigned to the states, i.e., the states p and q are in the same class by classification C1 if and only if 

η(p) = η(q). 

anim5_autom
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Let us see an example of how the algorithm works for the Moore automata. 

Example 35. The Moore automata A is defined by its Cayley table as follows: 
 

V x y y y x x x 

T Q →q1 q 2 q 3 q 4 q 5 q 6 q 7 

a q 2 q 5 q 1 q 5 q 2 q 3 q 4 

b q 7 q 4 q 6 q 2 q 4 q 6 q 1 

Find a minimal Moore automaton that is equivalent to A. 

Solution: 

First we check if every state is reachable from the initial state. It can be seen that states q 3 and q 6 are not 

reachable, therefore we erase them. We need to minimize the automaton 
 

V x y y x x 

T Q →q1 q 2 q 4 q 5 q 7 

a q 2 q 5 q 5 q 2 q 4 

b q 7 q 4 q 2 q 4 q 1 

Classification C 1 = {Q1, Q2} is based on the output function: Q1 = {q1, q5, q7} (having output x) and Q2 = {q2, q4} 

(having output y). Then, the transitions using the classification become: 
 

 Q Q 1 Q 2 

T  →q1 q 5 q 7 q 2 q 4 

a Q 2 Q 2 Q 2 Q 1 Q 1 

b Q 1 Q 2 Q 1 Q 2 Q 2 

Then, Q 1 is divided into two subclasses, therefore C 2 = {Q11, Q12, Q2} where Q11 = {q1, q7} and Q12 = {q5}. Then, 

we have: 
 

 Q Q 11 Q 12 Q 2 

T  →q1 q 7 q 5 q 2 q 4 

a Q 2 Q 2 Q 2 Q 12 Q 12 

b Q 11 Q 11 Q 2 Q 2 Q 2 

Thus C 3 = C2, and we can describe the minimal Moore automaton as follows: 
 

V x x y 

T Q →Q11 Q 12 Q 2 

a Q 2 Q 2 Q 12 

b Q 11 Q 2 Q 2 

We note here that the minimization methods for finite automata presented in this book are using the 

Aufenkamp-Hohn algorithm. 

Exercise 45. A Moore automaton A is given by the following Cayley table: 
 

V x x y z z y 

T Q →q0 q 1 q 2 q 3 q 4 q 5 

a q 4 q 5 q 3 q 0 q 4 q 5 
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V x x y z z y 

T Q →q0 q 1 q 2 q 3 q 4 q 5 

b q 1 q 2 q 4 q 5 q 5 q 5 

Give the same automaton by a graph. What is the output of the automaton for the input words 

 

           

abbaab and  

bbaabbaabbbb? 

 

         

Exercise 46. The Moore automaton A is defined by the graph shown in Figure 2.14.  

2.14. ábra - The graph of the Mealy automaton of Exercise 46. [42] 

 

Give it by a Cayley table. Give its output for the input 

 

           

cabbaccc,  

aabbccabcabcbbcaca and  

acaabacbbbcccaa.  

 

         

Exercise 47. The Moore automata A is defined by its Cayley table as follows: 
 

V 0 1 0 2 0 2 0 1 1 

T Q →q1 q 2 q 3 q 4 q 5 q 6 q 7 q 8 q 9 

a q 1 q 5 q 8 q 5 q 9 q 1 q 2 q 3 q 3 

b q 2 q 4 q 6 q 2 q 6 q 8 q 4 q 5 q 1 

c q 3 q 9 q 8 q 2 q 8 q 8 q 7 q 6 q 8 

Find a minimal Moore automaton that is equivalent to A. 

Exercise 48. The Moore automata A is defined by its Cayley table as follows: 
 

V x y y y z z 

T Q →q1 q 2 q 3 q 4 q 5 q 6 

a q 2 q 4 q 4 q 2 q 2 q 3 

b q 3 q 2 q 6 q 4 q 6 q 5 

Give the minimal Moore automaton that is equivalent to A. 

5.3. 2.5.3. Automata Mappings 

Finally, we devote this subsection to a brief analysis of the mappings T* → V* that can be obtained by the Mealy 

and the Moore automata. 

We provide a theorem that the classes of the Mealy and the Moore automata have the same efficiency. 

Theorem 9. (Gill's theorem). For every Mealy automaton there exists an equivalent Moore automaton and for 

every Moore automaton there exists an equivalent Mealy automaton. 

exe_Moor3
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For a Moore automaton there is a very simple way to construct a Mealy automaton that defines the same 

mapping from T* to V*. Roughly speaking, the output letter should move from a state to each of the transitions 

(arrows in the graph) into the given state. The other direction, that is not detailed here, can be done my 

multiplying the number of states (using the set Q × V). 

Now let us see some of the important properties of the mappings that can be defined by finite transducers. 

Theorem 10. (Raney's theorem). The automata mappings have the following two properties: 

• They are length preserving, i.e., for any input string w ∈  T*its length is the same as the length of the output u 

∈  V* given by w. 

• They are prefix keeping, i.e., the image of the prefix will also be prefix, more formally: for every w,v ∈  T*the 

output for the string wv will start with the output string assigned to w. 

We note here that there are automata mappings that cannot be defined by the finite state Mealy or Moore 

automata, but only by their infinite state variants. We have chosen not to discuss these infinite variants in our 

book. 
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3. fejezet - Linear Languages 

Summary of the chapter: In this chapter, we deal with a family of languages between the 

regular and context-free languages of the Chomsky hierarchy, i.e., the linear languages. We 

give an example for a non-regular linear language. A normal form for linear grammars is 

proven. The class of one-turn pushdown automata recognizes exactly the class of linear 

languages. This class is closed under union, but it is not closed under concatenation, Kleene-

star, complement and intersection. 

1. 3.1. Linear Grammars 

First let us recall the definition of linear grammars. 

Definition 19. (Linear grammars). A grammar G = (N, T, S, P) is linear if each of its productions has one of the 

following forms: A → u, A → uBv, where A,B ∈  N, u,v ∈  T*. The languages that can be generated by linear 

grammars are the linear languages. 

This class of languages are between the (classes of) type 3 and type 2 languages of the Chomsky hierarchy, thus 

we may call them type 2.5 languages. The linear grammars inherit the property of the regular grammars that 

there is at most one nonterminal in any sentential form. However, this nonterminal is not restricted to be at the 

end of the sentential form (as it was in the regular case), it can be in an arbitrary place. 

Now, we give an example, where the nonterminal is in the middle of the sentential forms in every derivation. 

Example 36. Let 

G = ({S}, {a,b}, S, {S → aSb, S →λ}). 

Then, every (finished) derivation in this grammar has the following form: applying the first rule n times (n ∈  ℕ, 

n ≥ 0) and then applying the second rule. Hence, the generated language is {anbn∣ n ∈  ℕ}. See also Animation 

8. [44] for an example derivation in this grammar. 

Animation 8. 
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Remember that in Example 29. [36] we have shown that this language is not regular, and thus, with Example 36 

[44] we have just proven that the class of linear languages strictly includes the class of regular languages. 

Theorem 11. Every linear language can be generated by a grammar having productions in the following forms, 

only: 

A → aB, A → Ba, A → a, S→λ. 

(We call a grammar with this property a linear grammar in normal form.) 

exa_nonreg
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Proof. The proof is constructive. Given G = (N, T, S, P) a linear grammar, we show how one can construct a 

grammar G' that is in normal form and equivalent to G. 

If there is a (are) rule(s) of the form A → λ (A ≠ S), then first the Empty-word lemma (Theorem 1. [9]) is applied 

and grammar G'' = (N'', T, S', P'') is obtained that may only contain λ in the right hand side of the rule S' → λ. 

Then in G'' either S = S', N'' = N or S' ∉  N and in this latter case N'' = N ∪  {S'}. 

Now as an intermediate step, we replace each of the rules A → uBv (where u ≠ λ, v ≠ λ) with rules A → uX, X → 

Bv, where X is a newly introduced nonterminal, i.e., X ∉  N''. After the substitution of each rule of this form 

grammar G''' = (N''', T, S', P''') is obtained and it is equivalent to the original grammar G. (See the left side of 

Figure 3.1., for an example.) 

3.1. ábra - In derivations the rules with long right hand side (left) are replaced by chains 

of shorter rules in two steps, causing a binary derivation tree in the resulting grammar 

(right). 

 

Now let us eliminate the rules having more than one terminal in their right hand side (i.e., they have long right 

hand side). Actually, rules of the form A → a1... ak for k > 1, where ai ∈  T, i ∈  {1,...,k} and A → a1... akB for k > 

1, where ai ∈  T, i ∈  {1,...,k}, B ∈  N''' can be substituted in the same manner as we have eliminated them in 

regular grammars (see the proof of Theorem 2 [13] for details). We present a similar technique for the rules of 

the form A → Ba1... ak for k > 1, where ai ∈  T, i ∈  {1,...,k}, B ∈  N''', since rules of this type were not present in 

regular grammars. Every rule of the above form is substituted by a chain of shorter rules introducing new 

nonterminals into the grammar: let the new nonterminals X1,..., Xk-1 be introduced and put to the set N''', and 

instead of the actual rule the next set of rules is added to P''': 

A → X1ak, X1 → X2ak-1, ..., Xk-2 → Xk-1a2, Xk-1 → Ba1. 

(See the right hand side of Figure 3.1, for an example.) 

Now a grammar G'''' = (N'''', T, S' ,P'''') is obtained and the set of productions P'''' can contain only rules of the 

following forms 

A → a, A → aB, A → Ba, A → B, S' → λ 

(A, B ∈  N'''', a ∈  T). Now, as a final step of our (algorithm) proof we need to exclude the chain rules (rules of 

the form A → B). This step can be done in a similar way as we showed in the proof of Theorem 2 [13]: first the 

set U(A) is determined for each nonterminal A, and then the grammar G' = (N'''', T, S', P') is obtained having P' 

= {A → r∣ ∃  B ∈  N'''' such that B → r ∈  P'''', r ∉  N'''' and B ∈  U(A)}. This grammar is in a normal form and it 

generates the same language as G, so the (construction) proof is finished. 

QED. 

Example 37. Let 

G = ({S, A, B},{1,3,7}, S, 

 

{  S → 11S37, 

   S → 7A,  

   S → B313, 

   A → 333B7777, 

thm_emptyword
thm_regNF
thm_regNF
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   A → S, B → λ, B → 731 

}).  

Give a linear grammar in a normal form that is equivalent to G. 

Solution: 

Since there is a rule B → λ in the grammar, we start by applying the Empty-word lemma. Then set U = {B} and 

it is the set of nonterminals from which the empty word λ can be derived. Consequently, we obtain the grammar 

G'' = ({S, A, B}, {1,3,7}, S, 

 

{  S → 11S37,  

   S → 7A, 

   S → B313, S → 313,  

   A → 333B7777, A → 3337777,  

   A → S, 

   B → 731  

}). 

We have the rules S → 11S37 and A → 333B7777 having terminals on both sides of the nonterminal in the right 

hand side, thus, the intermediate step results in the grammar 

G''' = ({S, A, B, X1, X2}, {1,3,7}, S, 

 

{  S → 11X1, X1 → S37, 

   S → 7A, 

   S → B313, 

   S → 313, 

   A → 333X2, X2 → B7777, 

   A → 3337777,  

   A → S, 

   B → 731  

}). 

Now let us replace the rules with more than one terminals on their right hand side by chains of rules having 

exactly one terminal on their right hand sides: 

G'''' = ({S, A, B, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, 

X21}, {1,3,7}, S, 

 

{  S → 1X3, X3 → 1X1, 

   X1 → X47, X4 → S3, 

   S → 7A,   

   S → X53, X5 → X61, X6 → B3, 

   S → 3X7, X7 → 1X8, X8 → 3, 

   A → 3X9, X9 → 3X10, X10 → 3X2,  

   X2 → X117, X11 → X127, X12 → X137, X13 → B7,  

   A → 3X14, X14 → 3X15, X15 → 3X16, X16 → 7X17, X17 → 7X18, X18 → 7X19, X19 → 7,  

   A → S, 

   B → 7X20, X20 → 3X21, X21 → 1 

}). 

However, grammar G'''' contains the chain rule A → S, and thus 

U(S) = {S}, U(A) = {A,S}, 

for the other nonterminals the trivial sets are obtained since they do not appear in any chain rules:  U(B) = {B} 

and U(Xi) = {Xi} (for 1 ≤ i ≤ 21). Thus, the result is: 

G' = ({S, A, B, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16, X17, X18, X19, X20, X21}, 

{1,3,7}, S, 

 

{  S → 1X3, A → 1X3, 



 Linear Languages  

 48  
Created by XMLmind XSL-FO Converter. 

   X3 → 1X1, 

   X1 → X47, 

   X4 → S3, 

   S → 7A, A → 7A, 

   S → X53, A → X53, 

   X5 → X61, 

   X6 → B3, 

   S → 3X7, A → 3X7,  

   X7 → 1X8, 

   X8 → 3, 

   A → 3X9, 

   X9 → 3X10, 

   X10 → 3X2, 

   X2 → X117, 

   X11 → X127, 

   X12 → X137, 

   X13 → B7, 

   A → 3X14, 

   X14 → 3X15, 

   X15 → 3X16, 

   X16 → 7X17, 

   X17 → 7X18, 

   X18 → 7X19, 

   X19 → 7, 

   B → 7X20, 

   X20 → 3X21, 

   X21 → 1 

}). 

It is linear, in normal form and equivalent to G. 

As special cases of linear grammars the right-linear grammars (i.e., our regular grammars) and also the so-called 

left-linear grammars are defined. 

Definition 20. (Left-linear grammars). A grammar G = (N, T, S, P) is left-linear if each of its productions has 

one of the following forms: A → u, A → Bu, where A,B ∈  N, u ∈  T*. 

We state the following interesting result about the languages that can be generated by left-linear grammars, 

without proof. 

Theorem 12. The language class that can be generated by left-linear grammars is exactly the class of regular 

languages. 

We note here that even though regular languages can be generated by using left linear or right linear rules, using 

both in the same grammar leads to a different language class. 

Finally, in this section, we provide a few exercises. 

Exercise 49. Give a linear grammar that generates the language 

{0m 1n 2n∣ n, m ∈  ℕ}. 

Exercise 50. Give a linear grammar that generates the language 

{a3nb2n∣ n ∈  ℕ}. 

Exercise 51. Give a linear grammar in normal form that generates the language 

{ucv∣ u, v ∈  {a,b}* such that the number of a's are the same in u and v}. 

Exercise 52. Let 

G = ({S, A, B, C}, {a, b, c}, S, 

 

{  S → aaSbc,  

   S → B,  
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   S → cccC,  

   A → λ, 

   A → aaa,  

   A → aCabc, 

   B → A, 

   B → Bbbb, 

   C → cAb, 

   C → c  

}). 

Give a linear grammar in normal form that is equivalent to G. 

2. 3.2. One-Turn Pushdown Automata 

It will be shown in the next chapter, that the class of pushdown automata accepts exactly the class of context-

free languages (Section 4.6). The class of linear languages can be recognized by a class of special pushdown 

automata, called one-turn pushdown automata. We will present these automata in detail in Subsection 4.6.4., 

when we are familiar with the concept of pushdown automata. 

3. 3.3. Closure Properties 

In this section we show that the class of linear languages is closed under union, but it is not closed under other 

regular operations and under other set-theoretical operations. 

Theorem 13. The class of linear languages is closed under union, i.e., the union of any two linear languages is 

also linear. 

Proof. The proof is constructive. Let L1 and L2 be linear languages. Let the linear grammars G1 = (N1, T, S1, P1) 

and G2 = (N2, T, S2, P2) generate the languages L1 and L2 such that N1 ∩ N2 = ∅  (this can be done by renaming 

nonterminals of a grammar without affecting the generated language). Then, let 

G = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1, S → S2}), 

where S ∉  N1 ∪  N2, is a new symbol. It can be seen that G generates the language L1 ∪  L2. 

QED. 

Theorem 14. The class of linear languages is not closed under concatenation and Kleene-star. 

Instead of a formal proof we offer a suggestion: 

Let us consider the language 

L = {anbn∣ n > 0}. 

The languages L · L and L* are not linear languages. 

Theorem 15. The class of linear languages is not closed under complement and intersection. 

Proof. Let us start with the intersection. Observe that both of the languages 

L 1 = {aj bjck∣ j, k ∈  ℕ} and L2 = {akbjcj∣ j, k ∈  ℕ} 

are linear. The intersection of these two languages is 

L = L1 ∩ L2 = {ajbjcj∣ j ∈  ℕ}. 

As we will prove it in Example this language is not context-free, and therefore it is not linear. This proves the 

non closure under intersection. 

We are going to prove now that the class is not closed under complement. Consider the following language: 

{wcw∣ w ∈  {a,b}*} over the alphabet {a,b,c}. It is called the language of ''marked-copy''. In Example 43. [57] 

BH_wcw
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we prove that this language is not context-free, and thus it is not linear. However, the complement of this 

language is a linear language. 

QED. 

Exercise 53. Give a linear grammar that generates the complement of the language of marked-copy. Hints: it 

can be done as union of linear languages. A word can be in this complement if, 

• it does not contain any c, 

• it does contain at least two c's, 

• it is of the form u c v, with u,v ∈  {a,b}*, but ∣ u∣ ≠∣ v∣ , 

• it is of the form u c v, with u,v ∈  {a,b}*, and ∣ u∣ =∣ v∣ , but there is a mismatch letter: u = u1xu2and v = 

u1yu2, where x,y ∈  {a,b}, but x ≠ y. 

Exercise 54. Give a grammar that generates the union of the languages generated by grammars G 1 and G 2, 

where 

G 1 = ({S1, A1, B1}, {a,b,c}, S1, 

 

{  S1 → aaS1ccc,  

   S1 → A1,  

   A1 → bB1b,  

   B1 → bB1, 

   B1 → b 

}) 

and 

G 2 = ({S2, A2, B2, C2}, {a,b,c}, S2, 

 

{  S2 → cccS2aa,  

   S2 → bA2, 

   A2 → A2b, 

   A2 → cB2aa,  

   A2 → C2, 

   B2 → bB2, 

   B2 → baccab, 

   C2 → C2c, 

   C2 → A2 

}). 
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4. fejezet - Context-free Languages 

Summary of the chapter: This chapter will mainly deal with the properties of the type-2 

language class of the Chomsky hierarchy, called context-free languages. This language class 

has many practical applications used in various areas of computer science. We will mention 

some of the most important ones. First, we discuss the notation techniques used to describe 

the syntax of programming languages, the Backus-Naur form, and the syntax diagram. 

Second, we introduce a normal form for context-free languages. This normal form will be 

used in Section 4.5., which is dedicated to parsing. The first pumping lemma, the Bar-Hillel 

lemma will be explained, and the closure properties of the context-free language class will be 

proven. In the last part of this chapter we introduce the pushdown automaton, we show its 

features, and its applications. 

1. 4.1. Notation Techniques for Programming 
Languages 

Notation techniques were introduced as simple methods to describe different parts of programming languages. 

These parts contain terminal and nonterminal symbols. Terminals are given, and nonterminals can be built up 

from terminals and already defined nonterminals by using simple operations. These operations are the 

following: 

1. Concatenation, when symbols are written after each other. 

2. Alternation is a selection from different possibilities. 

3. Option is a special selection between a symbol and the empty word. 

4. Repetition, when a symbol can be repeated any (≥ 0) number of times. 

In this section we introduce two well known techniques, the Backus-Naur form (BNF) and the Syntax diagram, 

but many others have been introduced for a variety of reasons. For example, the Extended Backus-Naur form is 

an extended version of the standard BNF. 

1.1. 4.1.1. Backus-Naur Form 

BNF was designed by Peter Naur in 1963 as a simplified version of the notation technique of John Backus. It 

was used first to describe the programming language ALGOL60. Table 4.1. shows the marking of the operations 

used by BNF. 

4.1. táblázat - Operations of the BNF metasyntax. 
 

Definition Concatenation Alternation Option Repetition 

∷ =  ∣  [] {} 

As you can see, concatenation does not have any special mark, we just write the symbols after each other. We 

use a terminal symbol as it is, for example, the mark of one as a number is 1. For nonterminals we use their 

names between angle brackets. We have a special mark to define nonterminal symbols, followed by the 

description of the nonterminal. 

Example 38. In this example, we describe a non-negative binary number using BNF metasyntax. 

 

   < digit > ::= 0 ∣  1  
   < positive > ::= [ + ] 1 { < digit > } 

   < number > ::= 0 ∣  < positive > 

 

1.2. 4.1.2. Syntax Diagram 
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A syntax diagram is a graphical notation technique. It uses simple graphs, each of them has an entry and an end 

point. The concatenation, alternation, option and repetition operations are implemented in the structure of the 

graph. 

Example 39.  Figure 4.1. describes a non-negative binary number using the syntax diagram. 

4.1. ábra - Syntax diagram. 

 

2. 4.2. Chomsky Normal Form 

A generative grammar is said to be λ-free grammar if none of its production rules contains the empty word λ on 

the right hand side. We have to note that each λ ∉  L context-free language can be generated by some λ-free 

context-free grammar. 

Definition 21. The grammar G = (N, T, S, P) is in Chomsky normal form, if all of its production rules has the 

form: 

1. A → BC or 

2. A → a, 

where A, B, C ∈  N and a ∈  T. 

This normal form was introduced by Noam Chomsky for λ-free context-free languages. Using the Chomsky 

normal form instead of the universal context-free grammar makes it more simple to store the grammar in the 

memory of the computer, to calculate using the grammar and to prove theorems about context-free languages. 

First, we have to prove that each λ-free context-free language can be generated by a Chomsky normal form 

grammar. 

Theorem 16. For each λ-free context-free grammar G = (N, T, S, P) one can give Chomsky normal form 

grammar G' = (N', T, S, P') such that L(G) = L(G'). 

Proof. We are going to give a constructive proof of this theorem. We are going to show the necessary steps to 

construct a Chomsky normal form grammar G' = (N', T, S, P') which is equivalent to the original λ-free context-

free grammar G = (N, T, S, P). It can easily be seen that we get equivalent grammars after each step. 

1. First of all we create the grammar G1 = (N1, T, S, P1) such that all of its production rules are of the form: 

a. A → p, or 

b. A → a, 
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where A ∈  N, a ∈  T and p ∈  N+. In this step we eliminate each terminal symbol from the production rules 

whose right-hand side contains more than one letter. To do this we introduce new nonterminal symbols for 

each such terminal symbol. Let the set of new nonterminals be Nnew = {X∣ a ∈  T, A → paq ∈  P, ∣ pq∣ ≠ 0} 

and let N1 = N ∪  Nnew. Then let the set P1 be the union of 3 different sets: 

a. {A → p∣ A → p ∈  P, p ∈  {T ∪  N+}} ⊂ P1 (we keep the rules for which the right hand side contains just 

one terminal, or contains only nonterminal symbols), 

b. {X → a∣ X ∈  Nnew} ⊂ P1 (we add new rules, the right hand side contains the terminal symbol, and the left 

hand side contains the nonterminal introduced for it), 

c. {A → p0X1p1X2... Xnpn∣ A → p0a1p1a2... anpn ∈  P, a1, a2,...,an ∈  T, X1, X2,...,Xn ∈  Nnew, p0, p1,...,pn ∈  N*, 

∣ p0a1p1a2... anpn∣ ≥ 2} ∈  P1 (here we change each appearance of the terminals to the nonterminal 

introduced for it in each rule, with right hand side of at least two letters). 

Now we have the sets N1 and P1 and the grammar G1 = (N1, T,S,P1) satisfies the above conditions. It can be 

easily shown that L(G1) = L(G). 

2. The next step is to eliminate the long rules. We create the grammar G2 = (N2, T, S, P2) such that all of its 

production rules are of the form: 

a. A → B, or 

b. A → BC, or 

c. A → a, 

where A, B, C ∈  N and a ∈  T. To reach our goal, we have to replace the long rules in P1 with short ones in 

P2. For each rule A → B1B2...Bk ∈  P1, k ≥ 3 we introduce new nonterminals Z1, Z2,...,Zk-2. The set N2 contains 

these new nonterminals and the nonterminals contained by the set N1. In the set P2 we keep those productions 

rules from the set P1 whose right hand side contains at most two letters and instead of each A → B1B2...Bk ∈  

P1, k ≥ 3 rule we introduce the rules 

 

            A → B1Z1, 

Z1 → B2Z2, 

⋮  
Zk-3 → Bk-2Zk-2, 

Zk-2 → Bk-1Bk. 

 

The grammar G2 = (N2, T, S, P2) has no long rules and L(G2) = L(G1). 

3. The third step is to eliminate the rules of the form A → B, where A, B ∈  N. 

First, for each nonterminal letter A let us collect all nonterminal letters B1, B2, ..., Bk such that A can be 

derived from Bi, 1 ≤ i ≤ k. Let U(A) = {B1, B2, ..., Bk} for each nonterminal A. The following formulas make 

this pocedure simple: 

a. U 1(A) = {A} 

b. Ui +1(A) = Ui(A) ∪  {B∣ B → C ∈  P2, C ∈  Ui(A)} 

c. if Uk(A) = Uk+1(A) then U(A) = Uk(A) 

When we have set U for each nonterminal letter, we can define set P' with the following formula: P' = {B → 

p∣ A → p ∈  P2, B ∈  U(A), p ∉  N2}. Then N' = N2, G' = (N', T, S, P') and L(G') = L(G2) = L(G1) = L(G). 

QED. 

Example 40. In this example we have a λ-free context-free grammar G, and we are going to create the grammar 

G' which is in Chomsky normal form and generates the same language as G. 
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        G = ({S, A, B}, {a,b,c},S, P) 

P = { 

  S → ABaba, 

  A → c, 

  A → B, 

  A → AS, 

  B → AbA, 

  B → S 

} 

1. The terminals a and b appear in a rule which has more than 1 letter on the right hand side, so we have to add 

two new nonterminals Xa and Xb to the set of nonterminals: N 1 = {S, A, B, Xa, Xb}. Now we add two new rules 

(Xa → a and Xb → b) to the set of production rules and replace the terminal symbol a by Xa and b by Xb in the 

rules which have more than one letter on the right hand side. Now we have 

 

            G 

            1 = ({S, A, B, Xa, Xb}, {a,b,c}, S, P1), 

P1 = { 

A → c, 

A → B, 

A → AS, 

B → S, 

Xa → a, 

Xb → b, 

S → ABXaXbXa, 

B → AXbA 

}. 

2. In the set P1 there are two long rules, S → ABXaXbXa and B → AXbA. We add new nonterminals Z1, Z2, Z3 to 

the first rule and Z4 to the second one, and replace the rule S → ABXaXbXa by rules 

 

            S → AZ1, 

Z1 → BZ2, 

Z2 → XaZ3, 

Z3 → XbXa, 

and the rule  B → AXbA by rulesB → AZ4, 

Z4 → XbA. 

Now we haveG2 = ({S, A, B, C, D, Z1, Z2, Z3, Z4}, {a,b,c}, S, P2), 

P2 = { 

A → c, 

A → B, 

A → AS, 

B → S, 

Xa → a, 

Xb → b, 

S → AZ1, 

Z1 → BZ2, 

Z2 → XaZ3, 

Z3 → XbXa, 

B → AZ4, 

Z4 → XbA 

}. 

3. U(B) = {B,A} and U(S) = {S,B,A}, and finally we have: 

 

            G' = ({S, A, B, C, D, Z1, Z2, Z3, Z4}, {a,b,c}, S, P'). 

P' = { 

A → c, 

A → AS, 

Xa → a, 

Xb → b, 

S→ AZ1, B → AZ1, A → AZ1, 

Z1 → BZ2, 

Z2 → XaZ3, 

Z3 → XbXa, 

B → AZ4, A → AZ4, 
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Z4 → XbA 

} 

Exercise 55. In this exercise we have a λ-free context-free grammar G, and you have to create a grammar G' 

which is in Chomsky normal form and generates the same language as G. 

 

        G = ({S, A, B}, {x,y,z}, S, P) 

P = { 

   S → BB, 

   A → S, 

   A → xxzz, 

   A → y, 

   B → AxzxA, 

   B → A 

} 

Exercise 56. Create a grammar G' which is in Chomsky normal form and generates the same language as G. 

 

        G = ({S, A, B}, {x,y}, S, P) 

P = { 

   S → ABBAB, 

   S → x, 

   A → BB, 

   A → S, 

   A → B, 

   B → ASA, 

   B → y 

} 

Exercise 57. Create a grammar G' which is in Chomsky normal form and generates the same language as G. 

 

        G = ({S, X, Z}, {x,y}, S, P) 

P = { 

   S → XZ, 

   S → ZX, 

   X → xy, 

   X → S, 

   Z → S, 

   Z → yx, 

   Z → X, 

   Z → ZZ 

} 

Exercise 58. Create a grammar G' which is in Chomsky normal form and generates the same language as G. 

 

        G = ({S}, {a,+,*,(,)}, S, P) 

P = { 

   S → S+S, 

   S → S*S, 

   S → (S), 

   S → a 

} 

Exercise 59. Create a grammar G' which is in Chomsky normal form and generates the same language as G. 

 

        G = ({S, A, B}, {x,y}, S, P) 

P = { 

   S → AxxB, 

   S → A, 

   S → B, 

   B → A, 

   A → y, 

   A → SB 

} 
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3. 4.3. Pumping Lemma for Context-free Languages 

Although it is easy to find the exact position of a grammar in the Chomsky hierarchy, it is sometimes much 

more challenging to find the position of a language in the Chomsky hierarchy. The Bar-Hillel lemma is the first 

pumping - also called iteration - lemma, which gives properties shared by all context-free languages. Thus, if a 

language does not satisfy the conditions of the lemma, it is not context-free. This lemma - and its variations - 

can be used to show that a language is not context-free. On the other hand, languages satisfying the conditions 

may be not context-free. 

Theorem 17. (Bar-Hillel lemma) For each context-free language L there exists an integer n ≥ 1 such that each 

string p ∈  L, ∣ p∣  ≥ n can be written in a form p = uvwxy, where ∣ vwx∣  ≤ n, ∣ vx∣  ≥ 1 and uviwxiy ∈  L holds 

for each integer i ≥ 0. 

Proof. Let L 1 = L \ {λ}. It is ovious that if language L1 satisfies the above conditions then language L = L1 ∪  {λ} 

also holds the above conditions, so it is enough to prove the lemma for λ-free context-free languages. 

Theorem 16 [52] shows that each λ-free context-free language can be generated by a Chomsky normal form 

grammar. Further on let us assume that grammar G generating L1 is in Chomsky normal form. 

Let us mark the number of nonterminals in grammar G by k, and let n = 2k+1. Let p be a word generated by 

grammar G, and let ∣ p∣  ≥ n. In this case, the height of the derivation tree of p is more than k+2, where the last 

step is a nonterminal to terminal derivation. Let us investigate the last k+2 height part of the longest path of the 

derivation tree. There must be a nonterminal A which appears twice, because the number of the nonterminals in 

G is less than the number of the nonterminals in this part. So there must be terminal words v, x such that A 

⇒*vAx. Here ∣ vx∣  ≥1 because A has two different occurrences in the path, and the length of the generated word 

is increased by one in each derivation step, except for the derivation steps when we change a nonterminal to a 

terminal symbol. Also, there is a terminal word w, which can be derived from the last appearance of A on the 

path, so A ⇒*w also holds. Moreover, there are terminal words u, y such that S ⇒*uAy. Based on these facts it is 

easy to show that 

 

        S ⇒*uAy ⇒*uwyS ⇒*uAy ⇒*uvAxy ⇒*uvwxyS ⇒*uAy ⇒*uvAxy ⇒*uvvAxxy ⇒*uvvwxxy 

⋮  

 

This proves that uviwxiy ∈  L holds for each integer i ≥ 0. 

Finally, ∣ vwx∣  ≤ n, because the word vwx was derived with a derivation subtree of height at most k+2, - where 

the last step was a nonterminal to terminal derivation, - so the length of the word vwx is maximum 2k which is 

less than n. 

QED. 

Example 41. The following classical example shows an application of the Bar-Hillel lemma. We are going to 

prove that language L = {ajbjcj∣ j ≥ 0} is not context-free. In order to do this suppose to the contrary that 

language L is context-free. Let j ≥ (n / 3), then, by the Bar-Hillel lemma, ajbjcj can be written in a form uviwxiy 

such that ∣ vx∣  ≥ 1 and uviwxiy ∈  L holds for each integer i ≥ 0. First, neither of v nor x should contain two or 

more different letters, because repeating them would change the form of the words in L. So v is a unary word 

(some power of a letter, e.g. aa...a) and x is a unary word as well. In this case, when we increase the integer i, 

we change the number of one or two different letters, but we cannot change the number of each letter, which is a 

contradiction. 

Example 42. Let us consider the language L ={ajbkcjdk∣ j, k ≥ 0}. Suppose to the contrary that language L is 

context-free. Then, the word anbncndn ∈  L can be written in a form uvwxy such that uviwxiy ∈  L for each i ≥ 0. 

Suppose that the word v contains the letter a. In this case, the word x cannot contain the letter c, because 

∣ vwx∣  ≤ n. Also, if the word v contains the letter b, then the word x cannot contain the letter d. In this case, we 

cannot increase the number of the letters a and c at the same time, and also we cannot increase the number of 

the letters b and d together, which means that this language does not satisfy the conditions of the Bar-Hillel 

lemma, consequently it is not context-free. 

ChNF
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Example 43. In this example we consider the language L = {wcw∣ w ∈  {a,b}*}, and we use the Bar-Hillel 

lemma to prove that this language is not context-free. Suppose to the contrary that the language L is context-

free, in this case the word anbncanbn can be written in a form uvwxy such that uviwxiy ∈  L for each i ≥0. The only 

possible solution is that the word v contains letters before the letter c and the word x contains letters after the 

letter c, because in other cases the number of the letters before and after c will not be the same. Now, ∣ vwx∣ ≤ 

n, so the word v can contain only letter b and the word x can contain only letter a, which is a contradiction. 

Example 44. In this example we show that the language L = {ap∣ p pime} is not context-free. Suppose to the 

contrary that the language L is context-free. Let p ≥ n, so ap can be written in a form uvwxy such that ∣ vx∣  ≥ 1 

and uviwxiy∈  L holds for each integer i ≥ 0. Now, let q = ∣ vx∣ , r = ∣ uwy∣ , so ar+i · q∈  L holds for each integer i 

≥ 0. This means that r+i · q is a prime for each integer i ≥ 0. Here r ≠ 1, because 1+i · q = 1 for i = 0, and 1 is 

not a prime number. Let i=r, then r+r · q should be a prime, but r+r · q = r · (1+q) is not a prime, so we have a 

contradiction. 

4. 4.4. Closure Properties 

Theorem 18. The context-free language class is closed under regular operations. 

Proof. We are going to give a constructive proof for each regular operation one by one. We use two context-free 

languages, L1 and L2. Let the grammar G1 = (N1, T, S1, P1) such that L(G1) = L1, and let the grammar G2 = (N2, T, 

S2, P2) such that L(G2) = L2. Without loss of generality we can suppose that N1 ∩ N2 = ∅ . We are going to give 

the context-free grammars GUn, GCo and GKl, such that L(GUn) = L1 ∪  L2, L(GCo) = L1 · L2 and L(GKl) = L1
*. 

1. Union 

To create the grammar GUn we need a new start symbol S, such that S ∩ N1 = S ∩ N2 = S ∩ T = ∅ . Then, let 

GUn = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1, S → S2}). 

2. Concatenation 

For the grammar GCo we also need a new start symbol S, such that S ∩ N1 = S ∩ N2 = S ∩ T = ∅ . Then, let 

GCo = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1S2}). 

3. Kleene star 

For the grammar GKl we again use a new start symbol S, where S ∩ N1 = S ∩ T = ∅ . Then, let 

GKl = (N1 ∪  {S}, T, S, P1 ∪  {S → λ, S → SS1}). 

QED. 

Theorem 19. The context-free language class is not closed under intersection. 

Proof. It is easy to prove this theorem, because we need only one counterexample. Let the language L1 = 

{aibicj∣ i, j ≥ 0}. L1 is context-free, because we have a context-free grammar G1 = ({S, A}, {a,b,c}, S, {S → Sc, S 

→ A, A → aAb, A → λ}) such that L1 = L(G1). Let the language L2 = {aibjcj∣ i, j ≥ 0}. The language L2 is also 

context-free, because we have a context-free grammar G2 = ({S, A}, {a,b,c}, S, {S → aS, S → A, A → bAc, A → 

λ}) such that L2 = L(G2). The intersection of these two languages is L1 ∩ L2 = {ajbjcj∣ j ≥ 0}, and in the Example 

41 [56] it is proven by the Bar-Hillel lemma that this language is not context-free. 

QED. 

Theorem 20. The context-free language class is not closed under the complement operation. 

Proof. Now we use proof by contradiction. The set theoretical version of one of the well known De Morgan's 

laws says that  With a slight modification, we have  Suppose to the contrary that 

the context-free languages are closed under the complement operation. In this case, if L1 and L2 are context-free 

languages, the language defined by the right hand side of the expression must be context-free, however, since 

the left hand side may be non-context-free as in the previous theorem, a contradiction. 
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QED. 

Theorem 21. The intersection of a context-free language and a regular language is always context-free. 

Proof. We are going to give a constructive proof for this theorem. Let L1 be a context-free language, and let L2 

be a regular language, where L2 = L21 ∪  L22 ∪ ...∪  L2n, and where each L2i(1 ≤ i ≤ n) is accepted by a deterministic 

finite automaton which has only one final state. We can do it without loss of generality, because it is well 

established fact that each regular language can be written in this form. Now 

 

because intersection distributes over union. Since context-free languages are closed under union, we only have 

to show that L1 ∩ L2i is context-free for each i. Let the grammar G = (N, T, S, P) be a Chomsky normal form 

grammar such that L(G) = L1 \ {λ}, and let DFAi = (Q, T, q0, δ, qf) be a deterministic finite automaton such that 

L(DFAi) = L2i. Now, we are going to define the context-free grammar G' = (N', T, S', P') such that L(G') = L1 ∩ 

L2i. The set of the nonterminals of G' is N' = {A[q1,B,q2]∣  for each q1, q2 ∈  Q, B ∈  N}. The production rules of the 

grammar G' are the following: 

1. S' → A[q0,S,qf] ∈  P', 

2. A [  q   1,  B,   q3  ] → A[q1,C,q2]A[q2,D,q3] ∈  P' for each possible q1, q2, q3 ∈  Q, if B → CD ∈  P, 

3. A [  q   1,  B,   q2  ] → a ∈  P' if B → a ∈  P and δ(q1,a) = q2, 

4. S' → λ ∈  P', if λ ∈  L1 and q0 = qf. 

It is easy to see that the grammar G' generates the word p, if and only if it is generated by grammar G, and it is 

accepted by the automaton L2i as well. Each production rule of the grammar G' is context-free, so the language 

generated by the grammar G' is context-free. 

QED. 

5. 4.5. Parsing 

In formal language theory, parsing - or the so called syntactic analysis - is a process when the parser determines 

if a given string can be generated by a given grammar. This is very important for compilers and interpreters. For 

example, it is not too difficult to create a context-free grammar GP generating all syntactically correct Pascal 

programs. Then, we can use a parser to decide - about a Pascal program written by a programmer - if the 

program is in the generated language L(GP). When the program is in the generated language, it is syntactically 

correct. 

5.1. 4.5.1. The CYK Algorithm 

We have a given Chomsky normal form grammar G = (N, T, S, P) and a word p = a1a2... an. The Cocke-

Younger-Kasami algorithm is a well known method to decide wether p ∈  L(G) or p ∉  L(G). To make our 

decision, we have to fill out an n × n size triangular matrix M in the following way: Over the cells of the first 

line, we write the letters a1,a2,...,an, starting from the first letter, one after the other. Then, the cell M(i,j) contains 

each nonterminal symbol A, if and only if the subword ajaj+1...aj+i-1 can be derived from A. (Formally: A ∈  M(i,j) if 

and only if A →*ajaj+1...aj+i-1.) This means that the first cell of the first line contains the nonterminal A, if and only 

if A → a1 ∈  P. The cell M(1,j) contains the nonterminal A, if and only if A → aj ∈  P. It is also quite easy to fill 

out the cells of the second line of the matrix. The nonterminal A is in the cell M(2,j), if and only if there exists 

nonterminals B, C ∈  N such that B ∈  M(1,j), C ∈  M(1,j+1), and A → BC ∈  P. From this point the algorithm 

becomes more complex. From the third line, we use the following formula: A ∈  M(i,j), if and only if there exists 

nonterminals B, C ∈  N and integer k such that B ∈  M(k,j), C ∈  M(i-k, j+k) and A → BC ∈  P. This algorithm is 

finished when the cell M(n,1) is filled out. Remember, the nonterminal A is in the cell M(i,j), if and only if the 

word ajaj+1...aj+i-1 can be derived from A. This means that the nonterminal S is in the cell M(n,1), if and only if the 

word a1a2...an can be derived from S. So the grammar G generates the word p, if and only if the cell M(n,1) 

contains the start symbol S. 
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4.2. ábra - The triangular matrix M for the CYK algorithm. 

 

Example 45. In this example, we use the CYK algorithm to show that the grammar G generates the word abbaa. 

 

          G = ({S, A, B}, {a,b}, S, P) 

P = { 

   S → SA, 

   S → AB, 

   A → BS, 

   B → SA, 

   S → a, 

   A → a, 

   B → b 

} 

4.3. ábra - The triangular matrix M for the CYK algorithm of the Example 45 [59]. 

 

As you can see, S ∈  M(5,1), so abbaa ∈  L(G). 

Exercise 60. Use the CYK algorithm to show that the grammar G generates the word baabba. 

 

          G = ({S, A, B, X, Y, Z}, {a,b}, S, P) 

P ={ 

CYK_example_1
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   S → AY, 

   Y → XB, 

   X → BA, 

   X → ZA, 

   Z → BX, 

   A → b, 

   B → a 

} 

Exercise 61. Use the CYK algorithm to decide if the word cbacab can be generated by grammar G. 

 

          G = (S, A, B, C, D}, {a,b,c}, S, P) 

P = { 

   S → AB, 

   A → CA, 

   A → SS, 

   B → CD, 

   A → b, 

   C → a, 

   C → b, 

   D → c 

} 

5.2. 4.5.2. The Earley Algorithm 

The Earley algorithm is designed to decide if a context-free grammar generates a terminal word. Sometimes it is 

not comfortable to create and use an equivalent Chomsky normal form grammar for a λ-free context-free 

grammar, because the Chomsky normal form grammar could have many more production rules than the original 

grammar. This is why the Earley algorithm is more widely used than the CYK algorithm for computerized 

lexical analysis. Although the Earley algorithm looks more complicated for humans, - and actually, it is more 

complicated compared to the the very simple CYK algorithm, - but after the implementation, there is no 

difference between the complexity of the two algorithms for computers. 

Now we are going to show the steps of the λ-free version of the Earley algorithm. It can work with rules having 

form A → λ as well, with minor modification, but in practice we do not need the extended version. 

5.2.1. Earley Algorithm 

Let G = (N, T, S, P) be a λ-free, context-free grammar, and p = a1a2... an ∈  T+, with integer n > 0. We are going 

to fill out the cells of an (n+1) × (n+1) triangular matrix M, except for the last cell M(n,n). Over the cells of the 

first line of the matrix, we write the letters a1, a2,..., an, starting from the second cell and first letter, one after the 

other. The elements of the matrix are production rules from P, where the right hand side of each rule contains a 

dot character. 

4.4. ábra - The triangular matrix M for the Earley algorithm. 

 

The steps of the algorithm are the following: 
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1. Let S → .q ∈  M(0,0) if S → q ∈  P, and let j = 0. 

2. Let A → .q ∈  M(j,j) if A → q ∈  P, and there exists an integer k≤ j such that B → r.At ∈  M(k,j). 

3. Let j = j+1 and let i = j-1. 

4. Let A → raj.t ∈  M(i,j) if A → r.ajt ∈  M(i,j-1). 

5. Let A → rB.t ∈  M(i,j) if there exists an integer i ≤ k < j such that A → r.Bt ∈  M(i,k), and B → q. ∈  M(k,j). 

6. If i > 0 then i = i-1 and goto 4. 

If i = 0 and j < n then goto 2. 

If i = 0 and j = n then finished. 

Here q ∈  (T ∪  N)+, A, B ∈  N, r, t ∈  (T ∪  N)*, and of course i,j,k are integers. 

Grammar G generates the word p (p ∈  L(G)), if and only if there is a production rule in M(0,n), whose left hand 

side is the start symbol S, and there is a dot at the end of the right hand side of the rule. 

Examplee 46. In this example, we have a λ-free context-free grammar G, and we have to decide if the word 

a*a+a can be generated by this grammar. 

 

            G = ({S, A, B}, {a,+,*,(,)}, S, P) 

P = { 

   S → S+AA → A*BB → (S) 

   S → AA → BB → a 

} 

4.5. ábra - The triangular matrix M for the Earley algorithm of the Example 46. [61] 

 

As you can see, the top right cell contains a rule, whose left hand side is the start symbol S, and there is a dot at 

the end of the right hand side of the rule, so a+a*a ∈  L(G). 

Exercise 62. Use the Earley algorithm to decide if the word 100110 can be generated by grammar G. 

Earley_example_1
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            G = ({S, A, B}, {0,1}, S, P) 

P = { 

   S → 0A1, 

   S → 1B0, 

   A → B1, 

   B → S1, 

   A → 0, 

   B → 1 

} 

Exercise 63. Use the Earley algorithm to decide if the word bbabb can be generated by grammar G. 

 

            G = ({S, A, B}, {a,b}, S, P) 

P = { 

   S → BAB → bAB, 

   A → BAb, 

   B → SbA, 

   A → a, 

   B → b 

} 

6. 4.6. Pushdown Automata 

Finite automata can accept regular languages, so we have to extend its definition so as it could accept context-

free languages. The solution for this problem is to add a stack memory to a finite automaton, and the name of 

this solution is "pushdown automaton". The formal definition is the following: 

Definition 22. A pushdown automaton (PDA) is the following 7-tuple: 

PDA = (Q, T, Z, q0, z0, δ, F) 

where 

• Q is the finite nonempty set of the states, 

• T is the set of the input letters (finite nonempty alphabet), 

• Z is the set of the stack symbols (finite nonempty alphabet), 

• q 0 is the initial state, q 0 ∈  Q, 

• z 0 is the initial stack symbol, z 0 ∈  Z, 

• δ is the transition function having a form Q × {T ∪  {λ}} × Z → 2Q×Z*, and 

• F is the set of the final states, F ⊆ Q. 

In order to understand the operating principle of the pushdown automaton, we have to understand the operations 

of finite automata and the stack memory. Finite automata were introduced in Chapter 2, and we studied them 

through many pages. The stack is a LIFO (last in first out) memory, which has two operations, PUSH and POP. 

When we use the POP operation, we read the top letter of the stack, and at the same time we delete it. When we 

use the PUSH operation, we add a word to the top of the stack. 

The pushdown automaton accepts words over the alphabet T. At the beginning the PDA is in state q0, we can 

read the first letter of the input word, and the stack contains only z0. In each step, we use the transition function 

to change the state and the stack of the PDA. The PDA accepts the input word, if and only if it can read the 

whole word, and it is in a final state when the end of the input word is reached. 

More formally, in each step, the pushdown automaton has a configuration - also called instantaneous description 

- (q,v,w), where q ∈  Q is the current state, v ∈  T* is the unread part of the input word, and w ∈  Z* is the whole 

word contained by the stack. At the beginning, the pushdown automaton is in its initial configuration: (q0, p, z0), 

where p is the whole input word. In each step, the pushdown automaton changes its configuration, while using 
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the transition function. There are two different kinds of steps, the first is the standard, the second is the so called 

λ-step. 

1. The standard step is when the PDA reads its current state, current input letter, the top stack symbol, it finds 

an appropriate transition rule, it changes its state, it moves to the next input letter and changes the top symbol 

of the stack to the appropriate word. Formally, we can say the PDA can change its configuration from (q1, av, 

zw) to (q2, v, rw) in one step, if it has a transition rule (q2, r) ∈  δ (q1, a, z), where q1, q2 ∈  Q, a ∈  T, z ∈  Z, v ∈  

T*, w ∈  Z*. Denote this transition (q1, av, zw) ⊦ PDA (q2, v, rw). 

2. The λ-step is when the PDA reads its current state, it does not read any input letters, it reads the top stack 

symbol, it finds an appropriate transition rule, and it changes its state, it does not move to the next input letter 

and it changes the top letter of the stack to the given word. Formally, we can say again that the PDA can 

change its configuration from (q1, v, zw) to (q2, v, rw) in one step, if it has a transition rule (q2, r) ∈  δ (q1, λ, z), 

where q1, q2 ∈  Q, z ∈  Z, v ∈  T*, and w ∈  Z*. Mark: (q1, v, zw) ⊦ PDA (q2, v, rw). 

We can say that the PDA can change its configuration from (q1, v, w) to (q2, x, y) in finite many steps, if there are 

configurations C0, C1,..., Cn such that C0 = (q1, v, w), Cn = (q2, x, y), and Ci ⊦ PDACi+1 holds for each integer 0 ≤ i < 

n. Mark: (q1, v, w) ⊦ *
PDA (q2, x, y). 

Finally, we can define the language accepted by the pushdown automaton: 

L(PDA) = {p∣ p ∈  T*, (q0, p, z0) ⊦ *
PDA (qf, λ, y), qf ∈  F, y ∈  Z*}. 

Example 47. This simple example shows the description of a pushdown automaton which accepts the language 

L = {aibicjdj∣ i, j ≥ 1}. 

 

        PDA = ({q0,q1,q2,q3,q4,q5},{a,b,c,d},{x,z0},q0,z0,δ,{q5}), 

   δ(q0,a,z0) = {(q1,xz0)}, 

   δ(q1,a,x) = {(q1,xx)}, 

   δ(q1,b,x) = {(q2,λ)}, 

   δ(q2,b,x) = {(q2,λ)}, 

   δ(q2,c,z0) = {(q3,xz0)}, 

   δ(q3,c,x) = {(q3,xx)}, 

   δ(q3,d,x) = {(q4,λ}, 

   δ(q4,d,x) = {(q4,λ)}, 

   δ(q4,λ,z0) = {(q5,z0)}. 

 

The Figure 4.6. shows the graphical notation of this pushdown automaton. 

4.6. ábra - The graphical notation for the Example 47. [63] 

 

PDA_example_2
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Example 48. This example shows the description of a pushdown automaton which accepts the language of 

words over the alphabet {a,b} containing more a's than b's. 

 

        PDA = ({q0,qa,qb},{a,b},{1,z0},q0,z0,δ,{qa}), 

   δ(q0,a,z0) = {(qa,z0)}, 

   δ(q0,b,z0) = {(qb,z0)}, 

   δ(qa,a,z0) = {(qa,1z0)}, 

   δ(qa,a,1) = {(qa,11)}, 

   δ(qa,b,1) = {(qa,λ)}, 

   δ(qa,b,z0) = {(q0,z0)}, 

   δ(qb,b,z0) = {(qb,1z0)}, 

   δ(qb,b,1) = {(qb,11)}, 

   δ(qb,a,1) = {(qb,λ)}, 

   δ(qb,a,z0) = {(q0,z0)}. 

 

The Figure 4.7. shows the graphical notation of this pushdown automaton. 

4.7. ábra - The graphical notation for the Example 48. [64] 

 

Exercise 64. Create a pushdown automaton, which accepts the language L = {aibj∣ 0 ≤ i ≤ j ≤ 2i}. 

Exercise 65. Create a pushdown automaton, which accepts the language L = {aibjck∣ i = j or j = k}. 

Exercise 66. Create a pushdown automaton, which accepts the language L = {aibjck∣ i = j or i = k}. 

6.1. 4.6.1. Acceptance by Empty Stack 

There is another method for accepting words with a pushdown automaton. It is called "acceptance by empty 

stack". In this case, the automaton does not have any final states, and the word is accepted by the pushdown 

automaton if and only if it can read the whole word and the stack is empty when the end of the input word is 

reached. More formally, the language accepted by automaton 

PDAe = (Q, T, Z, q0, z0, δ) 

by empty stack is 

L(PDAe) = {p∣ p∈T*,(q0,p,z0)⊦ *
PDAe(q,λ,λ),q∈Q}. 

PDA_example_4
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Example 49. This example shows the description of a pushdown automaton which accepts by empty stack the 

language L = {aibicjdj∣ i, j ≥ 1}. 

 

          PDA = ({q0,q1,q2,q3,q4,q5},{a,b,c,d},{x,z0},q0,z0,δ,{q5}), 

   δ(q0,a,z0) = {(q1,xz0)}, 

   δ(q1,a,x) = {(q1,xx)}, 

   δ(q1,b,x) = {(q2,λ)}, 

   δ(q2,b,x) = {(q2,λ)}, 

   δ(q2,c,z0) = {(q3,xz0)}, 

   δ(q3,c,x) = {(q3,xx)}, 

   δ(q3,d,x) = {(q4,λ}, 

   δ(q4,d,x) = {(q4,λ)}, 

   δ(q4,λ,z0) = {(q4,λ}. 

 

The Figure 4.8. shows the graphical notation of this pushdown automaton. 

4.8. ábra - The graphical notation for the Example 49. [65] 

 

Example 50. In this example, we are going to show the description of a pushdown automaton which accepts by 

empty stack the language with words over the alphabet {a,b} containing the same number of a's and b's. 

 

          PDA = ({q0},{a,b},{0,1,z0},q0,z0,δ), 

   δ(q0,a,z0) = {(q0,0z0)}, 

   δ(q0,b,z0) = {(q0,1z0)}, 

   δ(q0,a,0) = {(q0,00)}, 

   δ(q0,b,0) = {(q0,λ)}, 

   δ(q0,b,1) = {(q0,11)}, 

   δ(q0,a,1) = {(q0,λ)}, 

   δ(q0,λ,z0)={(q0,λ)}. 

 

The Figure 4.9. shows the graphical notation of this pushdown automaton. 

4.9. ábra - The graphical notation for the Example 50. [65] 

PDA_example_3
PDA_example_6
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The language class accepted by pushdown automata by final states and the language class accepted by 

pushdown automata by empty stack are the same. To prove this, we use two lemmas. First, we prove that for 

each PDA we can give PDAe such that L(PDAe) = L(PDA), second we show the reverse case. 

Lemma 1. For each PDA = (Q, T, Z, q0, z0, δ, F) we can give PDAe = (Q', T, Z, q0, z0,δ') such that L (PDAe) = 

L(PDA). 

Proof. We are going to define a pushdown automaton PDAe, which works the same way as the pushdown 

automaton PDA does, but each time when the original automaton goes into a final state, the new automaton goes 

into the state qf, as well. Then, PDAe clears out the stack, when it is in the state qf. Formally, let Q' = Q ∪  {qf} 

where {qf} ∩ Q = ∅ , and the transition function is the following: 

1. Let (q2,r) ∈  δ' (q1,a,z) if (q2,r) ∈  δ (q1,a,z), for each q1, q2 ∈  Q, a ∈  T ∪  {λ}, z ∈  Z, r ∈  Z*, 

2. let (qf,λ) ∈  δ' (q1,a,z) if (q2,r) ∈  δ (q1,a,z), for each q1 ∈  Q, q2 ∈  F,a ∈  T ∪  {λ}, z ∈  Z,r ∈  Z*, and 

3. let δ' (qf,λ,z) = {(qf,λ)} for each z ∈  Z. 

QED. 

Lemma 2. For each PDAe = (Q, T, Z, q0, z0, δ) we can give PDA = (Q', T, Z', q'0, z'0, δ', F) such that L(PDA) = 

L(PDAe). 

Proof. Again, we have a constructive proof. The automaton PDA first puts the initial stack symbol of the 

automaton PDAe over the new initial stack symbol. Then it simulates the original PDAe automaton, but each 

time when the original automaton clears the stack completely, the new automaton goes into the new final state 

qf. The automaton PDA defined below accepts the same language with final states which is accepted by the 

original automaton PDAe with empty stack. Let Q' = Q ∪  {q'0,qf}, where {q'0} ∩ Q = {qf} ∩ Q = ∅ , let Z' = Z ∪  

{z'0}, where {z'0} ∩ Z = ∅ , and let F = {qf}, so {qf} is the only final state, q'0 is the new initial state, and z'0 is the 

new initial stack symbol. The transition function is the following: 

1. Let δ'(q'0, λ, z'0) = {(q0,z0z'0)}, 

2. let (q2,r) ∈  δ' (q1,a,z) if (q2,r) ∈  δ (q1,a,z), for each q1, q2 ∈  Q, a ∈  T ∪  {λ}, z ∈  Z, r ∈  Z*, and 

3. let δ'(q,λ,z'0) = {(qf,λ)} for each q ∈  Q. 
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QED. 

Theorem 22. The language class accepted by pushdown automata with final states is the same as the language 

class accepted by pushdown automata with empty stack. 

Proof. This theorem is a direct consequence of Lemma 1. [66] and Lemma 2. [66] 

QED. 

The proof of Lemma 2. [66] has the following consequences: 

For each pushdown automaton we can give another pushdown automaton which accepts the same language with 

only one final state. 

For each pushdown automaton we can give another pushdown automaton which accepts the same language with 

a final state and with empty stack at the same time. 

6.2. 4.6.2. Equivalence of PDAs and Context-free Grammars 

In this subsection we are going to prove that the languages accepted by pushdown automata are the context-free 

languages. Again, we are going to give constructive proofs. First, we demonstrate that for each pushdown 

automaton we can give a context-free grammar generating the same language as accepted by the PDAe with 

empty stack, then we show how to construct a PDAe which accepts the language generated by a context-free 

grammar. 

Lemma 3. For each PDAe = (Q, T, Z, q0, z0, δ) we can give a context-free grammar G = (N, T, S, P) such that 

L(G) = L(PDAe). 

Proof. The set of input letters of the PDAe and the set of terminal symbols of grammar G are the same. The set 

of nonterminal letters is N = {S} ∪  {A[q,z,t]∣  for each q, t ∈  Q, z ∈  Z}. The production rules are the following: 

1. S → A[q0,z0,q] ∈  P for each q ∈  Q, 

2. A [  q,z,t  ] → aA[t,z1,q1]A[q1,z2,q2]... A[qn-1,zn,qn] ∈  P for each possible q1,..., qn ∈  Q, if (t, z1z2... zn) ∈  δ (q,a,z), where a ∈  T 

∪  {λ}, 

3. A [  q,z,t  ] → a ∈  P, if (t,λ) ∈  δ (q,a,z), where a ∈  T ∪  {λ}. 

Grammar G simulates the work of the PDAe in the following way: During the generating process the prefix of 

the generated word contains the the first part of the input word - which is already read by the pushdown 

automaton. It is followed by a nonterminal word A[q,z1,q1]A[q1,z2,q2]... A[qn-1,zn,qn], where z1z2... zn is the word contained by 

the stack, q is the current state and q1,q2,... qn can be any state. A[q,z,t] meaning that the automaton moves from 

state q to state t and removes the stack symbol z. The generated word keeps this structure during the generating 

process. When the automaton reaches the end of the input word and its stack is empty, then the word generated 

by the grammar contains the whole input word and does not contain any nonterminal symbols. 

QED. 

Lemma 4. For each context-free grammar G = (N, T, S, P) we can give a pushdown automaton PDAe = (Q, T, 

Z, q0, z0, δ) such that L(PDAe) = L(G). 

Proof. The set of input letters of the PDAe and the set of terminal symbols of grammar G are the same. Let Q = 

{q0}, Z = N ∪  T, , and z0 = S. The production rules are very simple. 

1. Let (q0,r) ∈  δ (q0,λ,A), if A → r ∈  P, and 

2. let (q0,λ) ∈  δ (q0,a,a) for each a ∈  T. 

During the computation of the PDAe, we use λ-steps to simulate the work of grammar G. The current word is 

always in the stack memory. We can remove the letters one by one, reading them from the input and clearing 

them at the same time from the top of the stack. The process is finished, when each letter is read and the stack is 

empty. 

emptyoda
emptyvissza
emptyvissza


 Context-free Languages  

 68  
Created by XMLmind XSL-FO Converter. 

QED. 

Theorem 23. A language is context-free, if and only if it is accepted by some pushdown automaton. 

Proof. This theorem is a direct consequence of Lemma 3. [67] and Lemma 4. [67] 

QED. 

Finally, we have to note that for each context-free language we can give a pushdown automaton, which has only 

one state and accepts the context-free language by empty stack. This statement is a direct consequence of the 

proof of Lemma 4. [67] 

6.3. 4.6.3. Deterministic PDA 

Definition 23. The pushdown automaton PDAd = (Q, T, Z, q0, z0, δ, F) is deterministic, if 

1. δ(q,a,z) has at most one element for each tripleq ∈  Q, a ∈  T ∪  {λ}, and z ∈  Z, and 

2. if δ(q,λ,z), q ∈  Q, z ∈  Z has an element, then δ(q,a,z) = ∅  for each a ∈  T. 

The language class accepted by deterministic pushdown automata with final states is a proper subset of the 

language class accepted by pushdown automata. 

Definition 24. The class of languages accepted by deterministic pushdown automata is called the class of 

deterministic context-free languages. 

In section 4.6.1. we have proven that the language class accepted by pushdown automata by final states and the 

language class accepted by pushdown automata by empty stack are the same. However, it is different for the 

deterministic case. The language class accepted by deterministic pushdown automata with empty stack is a 

proper subset of the language class accepted by deterministic pushdown automata with final states. Let us mark 

the deterministic pushdown automata accepting by empty stack with PDAde. We can summarize these properties 

in the following expression: 

L (PDAde) ⊂ L (PDAd) ⊂ L (PDAe) = L (PDA). 

6.4. 4.6.4. One-turn Pushdown Automata 

In this subsection, we define a subclass of pushdown automata as it has already been mentioned in Subsection 

3.2. 

Definition 25. The one-turn pushdown automaton (OTPDA) is a pushdown automaton PDA = (Q, T, Z, q0, z0, δ, 

F) with the following property: 

• The set of states Q = Q 1 ∪  Q2, where Q1 ∩ Q2 = ∅ , 

• q 0 ∈  Q1is the initial state, 

• δ : Q × {T ∪  {λ}} × Z → 2Q×Z*is the transition function such that each of its transitions is 

• either of the form (q',z') ∈  δ (q,a,z) with q ∈  Q1, ,q' ∈  Q, a ∈  T ∪  {λ}, z ∈  Z, z' ∈  Z+, 

• or of the form (q',z') ∈  δ (q,a,z) for q, q' ∈  Q2, a ∈  T ∪  {λ}, z ∈  Z, z' ∈  Z ∪  {λ}. 

According to the above definition, it is clear that in a run once the automaton reaches a state q' ∈  Q2, then it can 

never go back to a state in Q1: after the stack content has been decreasing in a step, it cannot increase again. This 

fact also appears in the name of these special automata: their runs have (at most) one turn point (measuring the 

stack content). 

Example 51. Let PDA = ({q0,q1,qf}, {0,1,2 }, {y,z}, q0, z,δ, qf) be a one-turn pushdown automaton with 

 

          Q 

pdacf
cfpda
cfpda
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          1 = {q0},   

   Q2 = {q1,qf}, 

and δ is given by the following transitions: 

 

   (q1,z) ∈ δ (q0,2,z),  

   (q0,yz) ∈ δ (q0,0,z),  

   (q0,yy) ∈ δ (q0,0,y),  

   (q1,y) ∈ δ (q0,2,y),  

   (q1, λ) ∈ δ (q1,1,y),  

   (qf, λ) ∈ δ(q1,2,z). 

 

(For all other triplets of {q 0,q1,qf} × {0,1,2} × {y,z} there is no transition available. Thus, if PDA reaches a 

configuration defining a triplet non-listed above, it causes the process to stop without accepting.) 

The work of the automaton can be described as follows: 

• if the input is 22, then by reading the first 2, it changes its state to q 1 (first transition) and then, it reaches qf 

by the last transition, and thus this input is accepted. (Observe that no other input starting with 2 can be 

accepted.) 

• if the input is of the form 0n21n2, then by the second transition PDA is starting to count and by the third 

transition it is continuing to count the number of 0's by pushing as many y's into the stack as the number of 0's 

already read. Then, by reading a 2 PDA is at its turning point (having n y in the stack), and it changes its 

state to q1. (Observe that there were no transitions defined for reading a 1 before this point.) Then, PDA is 

reading 1's and counting their number by decreasing the number of y's in the stack (popping them out one by 

one). Finally, if and only if the number of 0's are the same as the number of 1's, then PDA can accept the 

output by reading the last 2. 

• PDA is not accepting any other input. 

Thus, this pushdown automaton accepts the language 

L (PDA) = {0n21n2∣ n ∈  ℕ}. 

We are going to present the following theorem without a proof. 

Theorem 24. The class of languages accepted by one-turn pushdown automata and the class of linear 

languages coincide. 

If there is at most one possible transition in every possible configuration of a one-turn pushdown automaton, 

then it is a deterministic one-turn pushdown automaton. Observe that PDA is deterministic in Example 51. [68] 

The deterministic variant of the one-turn pushdown automaton is weaker than the non-deterministic one, and 

thus the class of them accepts a proper subclass of linear languages, namely, the deterministic linear languages. 

Example 52. The language 

{anbn∣ n ∈  ℕ} ∪  {anb3n∣ n ∈  ℕ} 

is a union of two languages that are deterministic linear, however, it is not deterministic linear itself. 

This chapter is concluded by some exercises. 

Exercise 67. Give a one-turn pushdown automaton that recognizes the language of palindromes (a palindrome 

is a word that is identical to its reverse). (Hint: this language cannot be accepted by deterministic OTPDA.) 

Exercise 68. Give a deterministic one-turn pushdown automaton that recognizes the language 

{anbmc2n+3∣  n, m ∈  ℕ} 

over the alphabet {a,b,c}. 

exa_otPDA
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Exercise 69. Give a one-turn pushdown automaton that accepts the language 

{uc*(c+d)ddv∣ u, v ∈  {a,b}*such that the number of a's in u and v are the same}. 
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5. fejezet - Context-Sensitive 
Languages 

Summary of the chapter: In this chapter, we deal with a family of languages generated by 

context-sensitive grammars of the Chomsky hierarchy, i.e., the context-sensitive languages. 

We are going to prove that monotone grammars generate the same language class. Normal 

forms of these grammars, such as Kuroda and Révész normal forms are provided. An example 

for a non-context-free, context-sensitive language is also given. The language class accepted 

by linear bounded automata coincides with the class of context-sensitive languages. This class 

is closed under the regular operations (union, concatenation, Kleene-star) and under the set 

theoretic operations complement and intersection. The word problem is solvable for these 

languages but no efficient algorithm is known for the general case. 

1. 5.1. Context-Sensitive and Monotone Grammars 

For better understanding, we start this section by recalling the definition of context-sensitive grammars and 

languages. 

Definition 26 (Context-sensitive grammars). A grammar G = (N, T, S, P) is context-sensitive if each of its 

productions has one of the following forms: pAq → puq, where A ∈  N, p, q ∈  (N ∪  T)*, u ∈  (N ∪  T)+; S → λ, 

and if S →λ ∈  P, then S does not occur in the right hand side of any rule in P. The languages that can be 

generated by context-sensitive grammars are the context-sensitive languages. 

Example 53.  Animation 9. [71] shows an example for a context-sensitive grammar with a sample derivation. 

Animation 9. 

 

We present yet another definition: 

anim_CS2
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Definition 27. (Monotone grammars). A grammar G = (N, T, S, P) is monotone (or length-non-decreasing) if for 

each of its rules p → q (p ∈  (N ∪  T)*N (N∪T)*, q ∈  (N ∪  T)+)∣ p∣  ≤ ∣ q∣ , but the possible rule S →λ. If S → λ 

is contained in P, then S does not occur in the right hand side of any rules of the grammar. 

It is an interesting property of monotone grammars that the terminals can be rewritten: this definition is so 

general that it allows to this (if there is a nonterminal close to that terminal), for example, by rule aaaaB → 

cccCCcc (with a, c ∈  T; B, C ∈  N). 

According to the definitions, it is obvious that every context-sensitive grammar is monotone. The opposite will 

also be proven in this section, but first we are going to investigate a few normal forms. 

1.1. 5.1.1. Normal Forms 

In this subsection, two normal forms are presented. 

Definition 28. (Kuroda normal form). A monotone grammar G = (N, T, S, P) is in Kuroda normal form, if it is 

monotone, and each of its rules is in one of the following forms: 

AB → CD, A → BC, A → B, A → a, S → λ 

(A,B,C,D ∈  N, a ∈  T). 

Since grammars in Kuroda normal form are monotone, in case S → λ is in the set of productions, the start 

symbol S cannot be in any right hand side of a rule. Kuroda normal form is a normal form, therefore we have the 

following theorem: 

Theorem 25. There is an equivalent grammar in Kuroda normal form for every monotone grammar. 

Proof. Let a monotone grammar G = (N, T, S, P) be given. The proof is constructive: we present an algorithmic 

way to obtain the grammar in Kuroda normal form that is equivalent to G. Since G is monotone, the generated 

language L(G) contains the empty word λ, if and only if there is a production S → λ in G. We need to deal only 

with the rules of the form p → q with ∣ p∣  ≤ ∣ q∣ . 

As a first step of our proof (algorithm), we obtain a grammar G'' that generates the same language as G, 

moreover, it has rules containing terminals only in rules of the form A → a. So for each terminal a let us 

introduce a new nonterminal Xa (Xa ∉  N), and replace each occurrence of all terminals in every rule by their new 

nonterminals (for example, a is replaced by Xa in every rule, both left and right hand side); and add the rules of 

the form Xa → a to the set of productions for each terminal: 

N'' = N ∪{Xa∣ a ∈  T}, 

G'' = (N'', T, S, 

{p' → q'∣ p → q ∈  P, and p' and q' are obtained from p and q, respectively, by replacing the occurrences of 

each terminal to the appropriate new nonterminal} ∪  {Xa → a∣ a ∈  T}). 

Observe that in G'' only nonterminals are rewritten. It can be seen that G' generates the same language as G, and 

the terminals can be derived only in the last steps of the derivations. 

Now, if a rule of the monotone grammar G'' is not allowed to be in a grammar in Kuroda normal form, then this 

rule must have longer right hand side than it is allowed in Kuroda normal form (i.e., 2). Let us substitute each of 

these rules by a sequence of appropriate rules. 

Let a rule A1... Am → B1... Bn in P. Based on the definition of monotone grammars it is clear that m ≤ n. Then 

• if n ≤ 2, then the rule is allowed in Kuroda normal form, and we leave it as is. 

• if m = 1 and n < 2, we can do the same replacement as we have done at the Chomsky normal form for 

context-free grammars (see the proof of Theorem 16. [52]): 

A 1 → B1... Bn 

ChNF
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is replaced by the set of rules 

A 1 → B1X1, X1 → B2X2, ... Xn-2 → Bn-1Bn, 

where X1,...,Xn-2 are new nonterminals, were not in the grammar so far. 

• if m ≥ 2, n > 2, then 

A 1... Am → B1... Bn 

is replaced by the set of rules 

A 1 A 2 → B1X1, X1A3 → B2X2, ... Xm-2Am → Bm-1Xm-1, 

Xm -1 → BmXm, ... , Xn-2 → Bn-1Bn, 

where X1,...,Xn-2 are new nonterminals, not used in the grammar before. See also Figure 5.1. 

5.1. ábra - In derivations the rules with long right hand side are replaced by chains of 

shorter rules. 

 

The resulting grammar generates the same language as G, and it is in Kuroda normal form. 

QED. 

Example 54. Let 

G = ({S, A, B, C}, {0,1,2}, S, 

 

   {S → ABAB00,  

    ABA → A111A, 

    A111 → B221, 

    B → 2, B → CC, 

    BB → CBA, 

    C → S, 

    C → 021  

}).  

Give a Kuroda normal form grammar that is equivalent to G. 

Solution: 

In the first step, by introducing the nonterminals D 0, D1, D2 (using them instead of the terminals) we obtain G'' 

as follows: 

G'' = ({S, A, B, C , D0, D1, D2}, {0,1,2}, S, 

 

   {S → ABABD0D0, 

    ABA → AD1D1D1A, 

    AD1D1D1 → BD2D2D1, 

    B → D2, B → CC,  

    BB → CBA, 

    C → S, 

    C → D0D2D1, 

    D0 → 0,  

    D1 → 1, 

    D2 → 2  

}). 

Now, we need to replace the rules which have too many letters (having right hand side longer than 2): 
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the original rule  replaced by the set of rules 

S → ABABD0D0:  S → AX1, X1 → BX2, X2 → AX3, X3 → 

BX4, X4 → D0D0, 

ABA → AD1D1D1A:  AB → AX5, X5A → D1X6, X6 → D1X7, 

X7 → D1A, 

AD 1 D 1 D 1 → BD2D2D1:  AD 1 → BX8, X8D1 → D2X9, X9D1 → 

D2D1, 

BB → CBA:  BB → CX10, X10 → BA, 

C → D0D2D1:  C → D0X11, X11 → D2D1. 

All the other rules are kept, thus we have the solution 

G' = ({S, A, B, C, D0, D1, D2, X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11}, {0,1,2}, S, 

{S → AX1, X1 → BX2, X2 → AX3, X3 → BX4, X4 → D0D0, 

AB → AX5, X5A → D1X6, X6 → D1X7, X7 → D1A, AD1 → BX8, 

X 8 D 1 → D2X9, X9D1 → D2D1, B → D2, B → CC, BB → CX10, X10 → BA, 

C → S, C → D0X11, X11 → D2D1, D0 → 0, D1 → 1, D2 → 2}). 

The next observation was proven by György Révész, so this normal form is caled Révész normal form. Every 

rule AB → CD of a Kuroda normal form grammar can be replaced by a chain of rules 

AB → AX, AX → YX, YX → YD, YD → CD, 

where X and Y are newly introduced nonterminals that are used only in these rules in the new grammar. 

Definition 29. (Révész normal form). A grammar G = (N, T, S, P) is in Révész normal form, if each of its rules 

is in one of the following forms: 

AB → AC, AB → CB, A → BC, A → B, A → a, S → λ 

(A,B,C ∈  N, a ∈  T and S does not occur in the right hand side of any rule if S → λ ∈  P). 

By using Révész's observation the following result is obtained: 

Theorem 26. There is an equivalent grammar in Révész normal form for every monotone grammar. 

Example 55. Let 

G = ({S, A, B}, {a,b,c}, S, 

 

   {S → BaB,  

    BaB → BABa,  

    A → BbB, 

    A → c, 

    B → BABB, 

    B → AbbA, 

    B → aB, 

    B → c, 

    S → λ 

}).  

Give a Révész normal form grammar that is equivalent to G. 

Solution: 

First, we obtain grammar G' that is in Kuroda normal form and generates the same language as G. Thus, 
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G'' = ({S, A, B, Ca, Cb, Cc}, {a,b,c}, S, 

 

   {S → BCaB,  

    BCaB → BABCa, 

    A → BCbB, 

    A → Cc, 

    B → BABB, 

    B → ACbCbA, 

    B → CaB, 

    B → Cc,  

    S → λ 

}), and  

G' = ({S, A, B, Ca, Cb, Cc, X1, X2, X3, X4, X5, X6, X7, X8}, {a,b,c}, S, 

 

   {S → BX1, X1 → CaB,  

    BCa → BX2, X2B → AX3, X3 → BCa, 

    A → BX4, X4 → CbB, 

    A → Cc, 

    B → BX5, X5 → AX6, X6 → BB,  

    B → AX7, X7 → CbX8, X8 → CbA, 

    B → CaB, 

    B → Cc, 

    S → λ 

}). 

Further, we need to replace the following rule by a chain of rules: 
 

the original rule  replaced by the set of rules 

X 2 B → AX3  X 2 B → X2Y1, X2Y1 → Y2Y1, Y2Y1 → 

Y2X3, Y2X3 → AX3. 

Thus, the Révész normal form grammar that is equivalent to G is 

G''' = ({S, A, B, Ca, Cb, Cc, X1, X2, X3, X4, X5, X6, X7, X8, Y1, X2}, {a,b,c}, S, 

{S → BX1, X1 → CaB, BCa → BX2, 

X 2 B → X2Y1, X2Y1 → Y2Y1, Y2Y1 → Y2X3, Y2X3 → AX3 

X 3 → BCa, A → BX4, X4 → CbB, A → Cc, 

B → BX5, X5 → AX6, X6 → BB, 

B → AX7, X7 → CbX8, X8 → CbA, B → CaB, B → Cc, S → λ}). 

One may observe that grammars in Révész normal form satisfy the conditions of the definition of context-

sensitive grammars, and thus one can construct an equivalent context-sensitive grammar for any monotone 

grammar, i.e., the following theorem is proven. 

Theorem 27. The class of languages generated by monotone grammars coincides with the class of context-

sensitive languages. 

By the previous theorem, we may use any monotone grammar to generate a context-sensitive language. 

As we have shown by the Empty-word lemma (Theorem 1. [9]) every context-free language can be generated by 

context-sensitive grammars. Now, we are going to give an example that proves that the class of context-free 

languages is strictly included in the class of context-sensitive languages. 

Example 56. Let 

G = ({S, A, B, C}, {a,b,c}, S, 

thm_emptyword
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   {S → λ,  

    S → abc,  

    S → aABC, 

    A → aABC,  

    A → aBC, 

    CB → BC, 

    aB → ab, 

    bB → bb, 

    bC → bc, 

    cC → cc 

}).  

Then λ and abc can be derived directly from S. Then every other (finished) derivation in this grammar applies S 

→ aABC, and then n times the rule A → aABC (n ∈  ℕ, n ≥ 0) and finally the rule A → aBC. In this way the 

sentential form starts with n + 2 a's and it contains n + 2 B's and C's. Then, every B must be positioned before 

the C's in a terminating derivation. Hence the generated language is {ajbjcj∣ j ∈  ℕ}. See Animation 10. [76] for 

a terminal derivation in this grammar. 

Animation 10. 

 

Remember that in Example 41. [56] we have shown that this language is not context-free, but as it can be seen 

from Example 56. [75], it is context-sensitive. 

We finish this section with some exercises. 

Exercise 70. Give a monotone grammar that generates the language 

{anbmcndm∣ n, m ∈  ℕ}. 

Exercise 71. Let 

G = ({S, A, B}, {0,1}, S, 

 

   {S → SAS,  

    SA → B0B0S, 

anim_CS1_abc
BHjjj
exa_CSlang
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    S → 1, 

    A → S0S, 

    B0B0 → 0S0S 

}). 

Give a Kuroda normal form grammar that is equivalent to G. 

Exercise 72. Let 

G = ({S, A, B, C}, {d,e}, S, 

 

   {S → λ,  

    S → BeBe, 

    C → BeBe, 

    BeBe → dAdA, 

    eB → dede, 

    Bd → CAC,  

    A → ede,  

    B → dd 

}).  

Give a Révész normal form grammar that generates the same language as G. 

Exercise 73. Let 

G = ({S, A, B, C, D}, {a,b,c}, S, 

 

   {S → λ,  

    S → AaBb,  

    Aa → ccBbBb,  

    Bb → CACA,  

    bB → DaDa, 

    DaD → CAC, 

    bBbBb → ABCaD, 

    A → a, 

    B → bb, 

    C → D, 

    C → ccc 

}). 

Give a Révész normal form grammar that generates the same language as G. 

Exercise 74. Let 

G = ({S, A, B, C}, {a,b,c,d}, S, 

 

   {S → BBC, 

    S → SAB, 

    A → cdC, 

    cdA → CBbb, 

    Bb → aa, 

    bbA → dbd, 

    A → a, 

    A → d, 

    B → b, 

    C → SdS, 

    C → cd 

}). 

Give a grammar in Révész normal form that generates the same language as G. 

2. 5.2. Linear Bounded automata 
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We mention here that a special class of Turing machines, the class of linear bounded automata recognizes 

exactly the class of context-sensitive languages. All the details will be shown in Subsection 6.4., when the 

concept of the Turing machines have already been introduced. 

3. 5.3. Properties of Context-Sensitive Languages 

3.1. 5.3.1. Closure Properties 

In this section, we prove that the class of context-sensitive languages is closed under union, concatenation and 

Kleene-star. It is also closed under the other set theoretical operations. 

Theorem 28. The class of context-sensitive languages is closed under the regular operations. 

Proof. The proof is constructive. Let L1 and L2 be two context-sensitive languages. Let the monotone grammars 

G1 = (N1, T, S1, P1) and G2 = (N2, T, S2, P2) be in Kuroda normal form and generate the languages L1 and L2, 

respectively, such that N1 ∩ N2 = ∅  (this can be done by renaming nonterminals of a grammar without affecting 

the generated language). 

First, we show the closure under union. 

• If λ ∉  L1 ∪  L2, then let 

G = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1, S → S2}), 

where S ∉  N1 ∪  N2, a new symbol. It can be seen that G generates the language L1 ∪  L2. 

• If λ ∈  L1 ∪  L2 (i.e., S1 → λ ∈  P1 and/or S2 → λ ∈  P2), then let 

G = (N1 ∪  N2 ∪  {S}, T, S, 

P 1 ∪  P2 ∪  {S → S1, S → S2, S → λ} \ {S1 → λ, S2 → λ}), 

where S ∉  N1 ∪  N2. In this way, G generates the language L1 ∪  L2. 

The closure under concatenation is proven for the following four cases: 

• If λ ∉  L1 and λ ∉  L2, then let 

G = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1S2}), 

where S ∉  N1 ∪  N2 a new symbol. 

• If λ ∈  L1 and λ ∉  L2, then let 

G = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1S2, S → S2} \ {S1 → λ}), 

where S is a new symbol. 

• If λ ∉  L1 and λ ∈  L2, then let 

G = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1S2, S → S1} \ {S2 → λ}), 

where S ∉  N1 ∪  N2 a new symbol. 

• If λ∈  L1 and λ ∈  L2, then let 

G = (N1 ∪  N2 ∪  {S}, T, S, 

P 1 ∪  P2 ∪  {S → S1S2, S → S1, S → S2, S → λ} \ {S1 → λ, S2 → λ}), 

where S ∉  N1 ∪  N2. 

It can be easily seen that G generates the language L1L2. 
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Finally, let us consider the closure under Kleene-star. Let now G1 = (N1, T, S1, P1) and G2 = (N2, T, S2, P2) be in 

Kuroda normal form and generate the languages L (both G1 and G2) such that N1 ∩ N2 =∅ . 

Let 

G = (N1 ∪  N2 ∪  {S, S'}, 

P 1 ∪  P2 ∪  {S → λ, S → S1, S → S1S2, S → S1S2S', S' → S1, S' → S1S2, S' → S1S2S'} \ {S1 → λ, S2 

→ λ}), 

where S, S' ∉  N1 ∪  N2, they are new symbols. Then G generates the language L*. 

QED. 

The closure of the class of context-sensitive languages under complementation was a famous problem and was 

open for more than 20 years. In the 1980's, Immerman, Szelepcsényi solved this problem independently. We 

present this result without proof. 

Theorem 29. The class of context-sensitive languages is closed under complementation. 

Theorem 30. The class of context-sensitive languages is closed under intersection. 

Proof. The proof uses the fact that this class is closed both under union and complementation. Let us consider 

the context-sensitive languages L1 and L2. Then, the complement of each of them is context-sensitive according 

to the theorem of Immerman and Szelepcsényi. Their union is also context-sensitive, as we have proven 

constructively. The complement of this language is also context-sensitive. However, this language is the same as 

L1 ∩ L2 by the De Morgan law. 

QED. 

Exercise 75. Give a monotone grammar that generates the language of marked-copy: 

{wcw∣ w ∈  {a,b}*} 

over the alphabet {a,b,c}. (Hint: use context-sensitive rules to allow some nonterminals to terminate, i.e., to 

change them to terminals only at the correct place.) 

Exercise 76. Give context-sensitive grammars that generate the union and the concatenations of the languages 

generated by grammars G 1 and G 2, where 

G 1 = ({S1, A1, B1, C1}, {a,b,c}, S1, 

 

   {S1 → λ,  

    S1 → C1aA1, 

    S1 → B1, 

    aA1 → B1B1, 

    B1 → B1b, 

    B1bb → cba, 

    C1 → cA1 

}) and 

G 2 = ({S2, A2, B2, C2}, {a,b,c}, S2, 

 

   {S2 → cccS2aA2a,  

    S2 → bA2,  

    ccS2 → C2bA2, 

    bA2 → A2b, 

    A2 → cB2C2a, 

    A2 → aa, 

    cB2 → bB2, 

    bB2 → baccabB2, 

    C2 → C2c, 

    C2c → A2S2, 
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    C2cc → cccc 

}). 

Exercise 77. Let 

G 1 = ({S, A, B}, {0,1}, S, 

 

   {S → λ,  

    S → AB, 

    A → 0AB, 

    0A→ 1A, 

    AB → 11 

}) and 

G 2 = ({S, B, C, D}, {0,1}, S, 

 

   {S → λ, 

    S → BC, 

    S → D, 

    B → BC, 

    B → 1, 

    1C → 1D0, 

    D → DD,  

    D → 11, 

    1D → C0, 

    BDC → 00D11 

}). 

Give context-sensitive grammars that generate 

• L(G1) ∪  L(G2), 

• L(G1) L(G2), 

• L(G2) L(G1), 

• (L(G1))* and 

• (L(G2))*. 

3.2. 5.3.2. About the Word Problem 

The word problem of context-sensitive grammars can be solved. Since this language class is accepted by linear 

bounded automata, it can be solved in linear space in a nondeterministic manner. It is known that polynomial 

space is sufficient with a deterministic algorithm: the required space is c∣ w∣ 2, where c is a constant and ∣ w∣  

is the length of the word. It is an open problem if linear space (i.e., c ∣ w∣  with a constant c) is sufficient or not. 

Regarding time complexity, there is no deterministic or nondeterministic algorithm is known that can solve the 

word problem in polynomial time (for arbitrary context-sensitive grammar/language). 

Now, we are going to present a naive solution to the word problem (which is very inefficient), but at the same 

time it shows that the problem is solvable. So let G = (N, T, S, P) and w be given. If the input word is the empty 

word (w = λ), then it is in the language, if and only if S → λ ∈  P. If ∣ w∣  > 0, then we may consider only the 

rules u → v of P with the property ∣ u∣  ≤ ∣ v∣ . Then, let us use a bread-first search algorithm. Let the initial 

node of the graph be labeled by S. Consider the productions as possible operators on the sentential forms. Then, 

the search-graph can be obtained by applying every applicable rule for every node. This graph is usually infinite, 

but we need to obtain only a finite portion of it. (Every label must appear at most once in the graph.) Since each 

of the rules has the monotone property we may cut those branches of the search-space that contain a longer 

sentential form than w (the solution cannot be in the continuation of such a branch). When we have obtained all 

the portions of the search-graph representing sentential forms not longer than w, then we can check whether w is 

a node of the graph, or not. If so, then it can be derived, it is in the generated language, else it is not. 

Exercise 78. Check whether the words abc and ccc are in the language generated by the grammar 
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G = ({S, A, B, C, D, E}, {a,b,c}, S, 

 

   {S → ab, 

    S → BS, 

    S → ABS, 

    A → a, 

    A → BCE, 

    AB → BA, 

    B → b, 

    BC → bc, 

    CE → abc,  

    D → b, 

    ED → aE, 

    E → DD, 

    bA → SS 

}).  
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6. fejezet - Recursively Enumerable 
Languages and Turing Machines 

Summary of the chapter: In this chapter, we discuss the most universal language class, the 

class of recursively enumerable languages, and the most universal automaton, the Turing 

machine. In the first section, we investigate the recursive and the recursively enumerable 

languages, and their closure and other properties. The second and third section is dedicated 

to the Turing machine. We will show two different applications. First, we are going to use the 

Turing machine as a universal language acceptor, then we show how we can use it as a 

simple but universal computing device. 

1. 6.1. Recursive and Recursively Enumerable 
Languages 

At the beginning of this chapter we introduce the recursive languages and the recursively enumerable languages. 

These two language classes are fundamental in computability theory. There are many equivalent definitions, 

however, we are going to use these two definitions now, and we are going to show how these definitions fit for 

the concept of the Turing machine later. 

Definition 30. The language L ∈  V*is recursive, if there is an algorithm, which decides about any word p ∈  V*, 

whether or not p ∈  L. 

We can say a language L is recursive, if the word problem can be solved in L. In Chapter 1. we define the class 

of the recursively enumerable languages as languages which can be generated by unrestricted generative 

grammars. Now, we give another definition. 

Definition 31. The language L ∈  V*is recursively enumerable, if there is a procedure, which specifies all the 

elements of L. 

The two definitions of the recursively enumerable languages are equivalent. If there is a procedure, which 

specifies all elements of the language L, then there is a generative grammar which generates the language L, and 

if there is a generative grammar generating the language L, then this grammar itself is a procedure, which can be 

used to specify all elements of the language L. 

It is obvious that each recursive language is a recursively enumerable, because we can list the words over an 

alphabet V, and select those words which are contained by the language L. 

Theorem 31. The language L is recursive, if and only if both L and  are recursively enumerable. 

Proof. First, we show that, if L ∈  V* and  are recursively enumerables, then L - and also  - is 

recursive. The language L is recursively enumerable, so there is a procedure which lists the elements of L. Let us 

denote these words p1, p2,.... However,  is recursively enumerable as well, so we have another procedure 

which lists the elements of . Let us denote these words r1,r2,.... Now we can combine these two procedures, to 

use the first one, and then the second one, alternately. What we receive is the list of all words over the alphabet 

V: p1, r1, p2, r2,... and we know about each one if it belongs to the language L or not. 

Now, we show that if L is recursive, then L and  is recursively enumerable. We already mentioned that 

recursive languages are recursively enumerable, because we can list all the words over an alphabet V, and add 

the current word to the language if it is in L. The same algorithm can be used for the language , we can list the 

words again, and we add them to the language if they are not in the language L. 

QED. 

The following theorem shows the connection between the context-sensitive and recursive languages. 
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Theorem 32. Each context-sensitive language is recursive, but there are recursive languages which are not 

context-sensitive. 

Proof. The first part of the theorem states that the word problem can be solved for each context-sensitive 

language. This was shown already in Section 5.3.2. 

For the second part, let us create the list of each possible context-sensitive generative grammar Gi = (Ni, Ti, Si, 

Pi), which generates numbers. (The set of the terminal letters of each grammar Gi are digits, so Ti = 

{0,1,2,3,4,5,6,7,8,9} for each Gi.) Now, we define language L, which contains the sequential numbers of 

grammars whose generated language does not contain its own sequential number (position in the list): L = {i∣ i 

∉  L(Gi)}. 

We can create a list of all context-sensitive generative grammars which generates numbers, and we can decide 

whether or not a context-sensitive grammar generates its position in the list, so language L is recursive. 

Now, suppose to the contrary that language L is context-sensitive. In this case, there is a context-sensitive 

grammar Gk, such that L(Gk) = L. Then, by the definition of L, if k ∈  L(Gk), then k ∉  L is a contradiction, and if k 

∉  L(Gk), then k ∈  L is also a contradiction. The only possible solution is that language L is not context-sensitive. 

QED. 

The next theorem shows that there are languages which are not in the class of recursively enumerable languages, 

so the recursively enumerable language class does not contain all possible languages. The concept of the proof 

is similar to the previous proof. 

Theorem 33. There exists a language L, which is not recursively enumerable. 

Proof. Let us create the list of each generative grammar Gi = (Ni, Ti, Si, Pi) which generates numbers. (The set of 

the terminals of each grammar Gi are numbers: Ti = {0,1,2,3,4,5,6,7,8,9} for each grammar Gi). We have to note 

that it is easy to create an ordered list of all possible generative grammars which generates numbers. Now, we 

define language L, which contains the numbers of the grammars which does not generate the number of its 

position in the list: L = {i∣ i ∉  L(Gi)}. 

Now, suppose to the contrary that the language L is recursively enumerable. In this case, there is a generative 

grammar Gk, such that L(Gk) = L. Then, by the definition of L, if k ∈  L(Gk), then k ∉  L is a contradiction, and if k 

∉  L(Gk), then k ∈  L is also a contradiction. The only possible solution is that language L is not recursively 

enumerable. 

QED. 

We have already shown that the class of context-sensitive languages is a proper subset of the class of recursive 

languages. It has also been proven that the class of all languages is a proper superset of the class of recursively 

enumerable languages. Finally, we note that the complementer language of language L defined in the proof of 

Theorem 33. [83] is recursively enumerable, but not recursive. We can summarize our results in the following 

formula: 

CS ⊊ R ⊊ RE ⊊ AL 

where CS stands for context-sensitive languages, R stands for recursive languages, RE stands for recursively 

enumerable languages, and AL stands for all languages. 

1.1. 6.1.1. Closure Properties 

Theorem 34. The class of recursive languages is closed under complement operation. 

Proof. Theorem 31. [82] states that language L is recursive, if and only if L and  are both recursively 

enumerable. However, we can apply the same theorem for the language , and what we receive as a result is 

that  is recursive, if  and L are both recursively enumerable, which is the same condition, so if L is 

recursive, then  is recursive, as well. 

QED. 

thm_all_languages
thm_recursive
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Theorem 35. The class of recursively enumerable languages is not closed under complement operation. 

Proof. The proof of this theorem is easy, we need only one example, where the language itself is recursively 

enumerable, and the complement language is not recursively enumerable. In the proof of the Theorem 33. [83] 

we have defined a language L which is not recursively enumerable. The complement language  is recursively 

enumerable. Here we have a recursively enumerable language , whose complement is not recursively 

enumerable. 

QED. 

Theorem 36. The class of recursively enumerable languages is closed under regular operations. 

Proof. We give a constructive proof here. Let the languages L1 and L2 be recursively enumerable. Let the 

grammar G1 = (N1, T, S1, P1) such that L(G1) = L1, and let the grammar G2 = (N2, T, S2, P2) such that L(G2) = L2. 

Without loss of generality we can suppose that N1 ∩ N2 =∅ , and the terminal symbols appear only in rules 

having the form A → a, where A ∈  N, a ∈  T. We define generative grammars GUn, and GCo, such that L(GUn) = L1 

∪  L2, and L(GCo) = L1 · L2. 

1. Union 

Let S be a new start symbol, such that S ∩ N1 = S ∩ N2 = S ∩ T = ∅ , and let 

GUn = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1, S → S2}). 

2. Concatenation 

Let S be a new start symbol, such that S ∩ N1 = S ∩ N2 = S ∩ T = ∅ , and let 

GCo = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → S1S2}). 

3. Kleene star 

In order to create a grammar generating the language L(GKl) = L1
* we use two grammars. Let the grammar G1 

= (N1, T, S1, P1), and let the grammar G2 = (N2, T, S2, P2) such that L(G1) = L(G2) = L1 \ {λ}, and N1 ∩ N2 = ∅ . 

Without loss of generality we can suppose that the terminal symbols appear only in rules having the form A 

→ a, where A ∈  N, a ∈  T. For the grammar GKl we again use a new start symbol S, where S ∩ N1 = S ∩ N2 = 

S ∩ T = ∅ . Then, let 

GKl = (N1 ∪  N2 ∪  {S}, T, S, P1 ∪  P2 ∪  {S → λ, S → S1, S → S1S2S}). 

QED. 

Theorem 37. The class of recursively enumerable languages is closed under intersection. 

Proof. By applying the definition of the recursively enumerable language, we can create a list of the elements of 

the recursively enumerable language L1 without repetitions, and yet another list, which contains the elements 

from the recursively enumerable language L2 without repetitions. Then, we can create a list, which contains one 

element from the list of the language L1, and then one element of the list of the language L2 alternately. We move 

an element from this combined list into the list of the L1 ∩ L2, if the element appears twice. 

QED. 

Finally, we have to note that recursive languages are also closed under regular operations and intersection. 

1.2. 6.1.2. Normal Forms 

Definition  The grammar G = (N, T, S, P) is in Révész normal form, if all of its production rules has the 

following forms: 

1. S → λ, 

2. A → a, 

thm_all_languages
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3. A → B, 

4. A → BC, 

5. AB → AC, 

6. AB → CB, or 

7. AB → B, 

where A, B, C ∈  N and a ∈  T. 

This normal form for unrestricted grammars was introduced by György Révész. Compared to the Kuroda 

normal form, the differences are the following: 

• It allows the rule S → λ for grammars generating the empty word, 

• instead of the rule AB → CD it allows two rules, namely AB → AC and AB → CB, 

• the only ,,really plus'' rule, which makes the difference between the monotone and unrestricted grammars is 

the last production rule: AB → B. 

As you can see, there is not a huge difference between the unrestricted grammars and the context-sensitive 

grammars. For generative grammars generating context-sensitive languages, only one production rule form is 

enough to be able to generate any recursively enumerable language. 

Even more surprising results were proven by Viliam Geffert. His results put limitations not just to the form of 

the production rules, but also to the number of the nonterminal symbols. We introduce his results as theorems, 

without proofs. 

Theorem 38. For each recursively enumerable language L we can give an unrestricted generative grammar G 

= (N, T, S, H) such that 

• grammar G generates the language L, (L(G) = L), 

• G has exactly 5 nonterminal symbols, (N = {S, A, B, C, D}), and 

• each rule has a form: 

• S → p where S is the start symbol, and p is a nonempty word, (p ∈  (N ∪  T)+), 

• AB → λ, or 

• CD → λ. 

Theorem 39. For each recursively enumerable language L we can give an unrestricted generative grammar G 

= (N, T, S, H) such that 

• grammar G generates the language L, (L(G) = L), 

• G has exactly 4 nonterminal symbols, (N = {S, A, B, C}), and 

• each rule has a form: 

• S → p where S is the start symbol, and p is a nonempty word, (p ∈  (N ∪  T)+), 

• AB → λ, or 

• CC → λ. 

Theorem 40. For each recursively enumerable language L we can give an unrestricted generative grammar G 

= (N, T, S, H) such that 

• grammar G generates the language L, (L(G) = L), 
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• G has exactly 3 nonterminal symbols, (N = {S,A,B}), and 

• each rule has a form: 

• S → p where S is the start symbol, and p is a nonempty word, (p ∈  (N ∪  T)+), 

• AA → λ, or 

• BBB → λ. 

Theorem 41. For each recursively enumerable language L we can give an unrestricted generative grammar G 

= (N, T, S, H) such that 

• grammar G generates the language L, (L(G) = L), 

• G has exactly 3 nonterminal symbols, (N = {S, A, B}), and 

• each rule has a form: 

• S → p where S is the start symbol, and p is a nonempty word, (p ∈  (N ∪  T)+), or 

• ABBBA → λ. 

Theorem 42. For each recursively enumerable language L we can give an unrestricted generative grammar G 

= (N, T, S, H) such that 

• grammar G generates the language L, (L(G) = L), 

• G has exactly 4 nonterminal symbols, (N = {S, A, B, C}), and 

• each rule has a form: 

• S → p where S is the start symbol, and p is a nonempty word, (p ∈  (N ∪  T)+), or 

• ABC → λ. 

2. 6.2. Turing Machine, the Universal Language 
Acceptor 

Turing machines play a fundamental role in the algorithms and computational theory. The concept of Turing 

machine was invented by Alan Turing in 1937. This simple hypothetical device is able to compute all the 

functions which are algorithmically computable. Before we deal with the Turing machine as a universal tool for 

describing algorithms, we introduce the Turing machine as a universal language definition device. 

The basic concept is that the Turing machine manipulates a string on a two-way infinite tape according to 

transition rules, and decides whether or not the input string belongs to a language accepted by the Turing 

machine. The tape contains an infinite number of cells, and each cell contains one letter. At the beginning, the 

tape contains the input string, and the rest of the cells contain a special tape symbol called a blank symbol. 

There is a head, which can read and write the content of the current cell of the tape, and can move both to the 

left and to the right. At the beginning, the head is over the first letter of the input string. The Turing machine 

also has its own inner state, which can be changed in each step. At the beginning, the inner state of the Turing 

machine is the initial state. The transition rules are the "program" of the Turing machine. 

In each step the machine reads the letter contained by the current cell of the tape, and also reads its own inner 

state, then writes a letter into the current cell, changes its inner state and moves the head to the left or to the 

right, or stays in the same position. Sometimes, it does not change its inner state, and sometimes it does not 

change the content of the current cell. The operations of the Turing machine are based on the transition rules. 

Let us see the formal definition and the detailed description. 

Definition 33. The (nondeterministic) Turing machine (TM) is the following 7-tuple: 
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TM = (Q, T, V, q0, #, δ, F) 

where 

• Q is the finite nonempty set of the states, 

• T is the set of the input letters, (finite nonempty alphabet), T ⊆ V, 

• V is the set of the tape symbols, (finite nonempty alphabet), 

• q 0 is the initial state, q 0 ∈  Q, 

• # is the blank symbol, # ∈  V, 

• δ is the transition function having a form Q × V → 2Q×V×{Left, Right, Stay}, and 

• F is the set of the final states, F ⊆ Q. 

We have a description of the parts of our device, and now we have to describe its operation. In each step, the 

Turing machine has its configuration (u,q,av), where q ∈  Q is the current state, a ∈  V is the letter contained by 

the current cell, and u, v ∈  V* are the words before and after the current letter, respectively. The first letter of the 

word u and the last letter of the word v cannot be the blank symbol, and the word uav is the "important" part of 

the tape, the rest of the tape contains only blank symbols. At the beginning, the Turing machine has its initial 

configuration: (λ, q0, av), where av is the whole input word. In each step, the Turing machine changes its 

configuration according to the transition function. There are three possibilities, depending on the movement part 

of the applied rule. 

1. The simplest case is when the applied transition rule has a form (q2, a2, Stay) ∈  δ (q1, a1). In this case, we just 

change the state and the symbol contained by the current cell of the tape according to the current rule. 

Formally, we say the TM can change its configuration from (u, q1, a1v) to (u, q2, a2v) in one step, if it has a 

transition rule (q2, a2, Stay) ∈  δ (q1, a1), where q1, q2 ∈  Q, a1, a2 ∈  V, and u, v ∈  V*. 

Mark: (u, q1, a1v) ⊦ TM (u, q2, a2v). 

2. The next possibility is when the applied transition rule has a form (q2, a2, Right) ∈  δ (q1, a1). In this case, we 

change the state and the symbol contained by the current cell of the tape according to the current rule, and 

move the head to the right. Formally, we say the TM can change its configuration from (u, q1, a1v) to (ua2, q2, 

v) in one step, if it has a transition rule (q2, a2, Right) ∈  δ (q1, a1), where q1, q2 ∈  Q, a1, a2 ∈  V, and u, v ∈  V*. 

It is denoted by (u, q1, a1v) ⊦ TM (ua2, q2, v). 

Here, we have a special case, namely, if a2 = # and u = λ, then (u, q1, a1v) ⊦ TM (λ, q2, v). 

3. The last possibility is when the applied transition rule has a form (q2, a2, Left) ∈  δ(q1, a1). In this case, we 

change the state and the symbol contained by the current cell of the tape according to the current rule, and 

move the head to the left. To formalize this case, we have to write the word u in a form u = wb, where b is 

the last letter of the word u. We say that the TM can change its configuration from (wb, q1, a1v) to (w, q2, 

ba2v) in one step, if it has a transition rule (q2, a2, Left) ∈  δ (q1, a1), where q1, q2 ∈  Q, a1, a2, b ∈  V, and w, v 

∈  V*. 

It is denoted by (wb, q1, a1v) ⊦ TM (w, q2, ba2v). 

Here, we also have a special case, namely, if a2 = # and v = λ, then (wb, q1, a1v) ⊦ TM (w, q2, b). 

Now, let X and Y be configurations of the same Turing machine. Then, we say that the Turing machine can 

change its configuration from X to Y in finite number of steps, if X = Y, or there are configurations C0, C1, ..., Cn 

such that C0 = X, Cn = Y, and Ci ⊦ TMCi+1 holds for each integer 0 ≤ i < n. 

It is denoted by X ⊦ *
TM Y. 

A configuration is called a final configuration, if the Turing machine is in a final state. Now, we can define the 

language accepted by the Turing machine. The input word is accepted, if the Turing machine can change its 

configuration from the initial configuration to a final configuration in finite number of steps. 
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L(TM) = {p∣ p ∈  T*, (λ, q0, p) ⊦ *
TM (u, qf, av), qf ∈  F, a ∈  V, u, v ∈  V*}. 

Example 57. Let the language L be the language of the palindromes over the alphabet {a, b}. (Palindromes are 

words that reads the same backward or forward.) This example shows the description of a Turing machine TM, 

which accepts the language L. 

 

        TM = ({q0,q1,q2,q3,q4,q5,qf}, {a,b}, {a,b,#}, q0,#,δ, {qf}) 

   δ(q0,#) = {(qf,#,Stay)}, 

   δ(q0,a) = {(q1,#,Right)}, 

   δ(q0,b) = {(q2,#,Right}, 

   δ(q1,a) = {(q1,a,Right)}, 

   δ(q1,b) = {(q1,b,Right)}, 

   δ(q1,#) = {(q3,#,Left)}, 

   δ(q3,a) = {(q5,#,Left)}, 

   δ(q3,#) = {(qf,#,Stay)}, 

   δ(q2,a) = {(q2,a,Right)}, 

   δ(q2,b) = {(q2,b,Right)}, 

   δ(q2,#) = {(q4,#,Left)}, 

   δ(q4,#) = {(qf,#,Stay)}, 

   δ(q4,b) = {(q5,#,Left)}, 

   δ(q5,a) = {(q5,a,Left)}, 

   δ(q5,b) = {(q5,b,Left)}, 

   δ(q5,#) = {(q0,#,Right)}. 

         

Exercise 79. Create a Turing machine, which accepts words over the alphabet {a,b} containing the same 

number of a's and b's. 

Exercise 80. Create a Turing machine, which accepts words over the alphabet {a,b} if they are a repetition of 

another word. 

Exercise 81. Create a Turing machine, which accepts binary numbers greater than 20. 

Our final note is that, although it is a simple construction, Turing machines can accept any language from the 

recursively enumerable language class. This statement is formulated in the following theorem. 

Theorem 43. A language L is recursively enumerable, if and only if there exists a Turing machine TM such that 

L = L(TM). 

2.1. 6.2.1. Equivalent Definitions 

There are several equivalent definitions for the Turing machine. In this subsection we are going to introduce 

some of them. Our first definition is the deterministic Turing machine, which has the same language definition 

power as the nondeterministic Turing machine. A Turing machine is called deterministic, if from each 

configuration it can reach at most one other configuration in one step. The formal definition is the following: 

Definition 34 The Turing machine TMd = (Q, T, V, q0, #, δ, F) is deterministic, if the transition function δ(q,a) 

has at most one element for each pair (q,a), where q ∈  Q and a ∈  V. 

In other words, the Turing machine TMd = (Q, T, V, q0, #, δ, F) is deterministic, if the form of the transition 

function δ is Q × V → Q × V × {Left, Right, Stay}. 

Theorem 44. For each Turing machine TM there exists a deterministic Turing machine TMd such that L(TM) = 

L(TMd). 

Now, we are going to introduce the multitape Turing machine, which looks like a more powerful tool compared 

to the original Turing machine, but in reality it has the same language definition power. In this case, we have 

more than one tape, and we work on each tape in each step. At the beginning, the input word is written on the 

first tape, and the other tapes are empty. (Contains blank symbols in each position.) The multitape Turing 

machine is in initial state, and the head is over the first letter of the first tape. In each step the multitape Turing 

machine reads its own state and the symbols from the cells of each tape, then changes its state; it writes symbols 

into the current cell of each tape and moves the head to the left or to the right, or stays in a same position over 
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each tape separately. Observing the formal definition, its only difference compared to the deterministic Turing 

machine is that it has more tapes, and as a result, it has a different transition function. 

Definition 35. The multitape Turing machine is the following octuple TMm = (k, Q, T, V, q0, #, δ, F), where Q, T, 

V, q0, # and F are the same as before, the integer k ≥ 0 is the number of the tapes, and the form of the transition 

function δ is Q × Vk → Q × (V × {Left, Right, Stay})k. 

As we have noted before, multitape Turing machines accept recursively enumerable languages as well. 

Theorem 45. For each multitape Turing machine TMm there exists (a one-tape) Turing machine TM such that 

L(TM) = L(TMm). 

The reason for using the multitape Turing machine or the deterministic Turing machine instead of the original 

Turing machine is very simple. Sometimes it is more comfortable to use these alternative Turing machines for 

calculating or proving theorems. 

For the same purpose, sometimes we use a Turing machine which has one tape, and this tape is infinite in one 

direction, and the other direction is "blocked". This version has a special tape symbol in the first cell, and when 

the Turing machine reads this symbol, the head moves to the right and does not change this special symbol. 

There is yet another possibility, when the Turing machine must not stay in the same position, in each step the 

head must move to the right or to the left. Sometimes we use only one final state, and sometimes we use a 

rejecting state as well, but all of these versions are equivalent to each other. Each of the Turing machine 

described above accepts recursively enumerable languages, and each recursively enumerable language can be 

accepted by each type of the above mention Turing machines. 

3. 6.3. Turing Machine, the Universal Computing 
Device 

We have discussed earlier that the Turing machine is not just a language definition tool. The original reason for 

introducing the Turing machine was to simulate mathematical algorithms which can calculate complicated 

functions. Later, it has been recognized that all algorithmically computable functions can be calculated by the 

Turing machine, as well. The statement which claims that a function is algorithmically computable if and only if 

it can be computed by the Turing machine is called Church's thesis. Church's thesis is not a theorem, it cannot be 

proven, because "algorithmically computable" is not a well defined expression in the thesis. In spite of the fact 

that Church's thesis is not a proven theorem, the thesis is accepted among scientists. The most important 

consequence of the thesis is that even the latest, and the strongest computer with a highly improved computer 

program can only compute the same things as a very simple Turing machine. Therefore we can use the Turing 

machine to show if something can be computed or not; and this is why the Turing machine plays a fundamental 

role in the algorithms and computational theory. Although this book focuses on formal languages, we cannot 

conclude this topic without illustrating the basics of the application of the Turing machine as a computing 

device. 

When we use the Turing machine to compute/calculate a function, we use it the same way as before. At the 

beginning, the input word is on the tape, and when the Turing machine reaches a final configuration (u,qf,av), 

the result of the computation/calculation is the word uav, which is the significant part of the tape. In the 

Example 58. [89] we show a Turing machine, which computes the two's complement of the input binary 

number. 

Example 58. TM = ({q0, q1, qf}, {0,1}, {0,1,#}, q0, #, δ, {qf}) 

 

   δ(q0,1) = {(q0,0,Right)}, 

   δ(q0,0) = {(q0,1,Right)}, 

   δ(q0,#) = {(q1,#,Left}, 

   δ(q1,1) = {(q1,0,Left)}, 

   δ(q1,0) = {(qf,1,Stay)}. 

The Figure 6.1. shows the graphical notation of this Turing machine. 

6.1. ábra - The graphical notation for the Example 58. [89] 

TM_example_1
TM_example_1
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Exercise 82. Create a Turing machine, which changes the first five 0 to 1 in an input binary number. 

Exercise 83. Create a Turing machine, which adds five to the input binary number. 

Exercise 84. Create a Turing machine, which changes the order of two input binary numbers, separated by 

space. 

Each equivalent definition of the Turing machine which was given at the end of the previous section can work 

here, so we can use the deterministic Turing machine, the multitape Turing machine, and the single tape Turing 

machine, which is infinite only in one direction, or we can extend the Turing machine with rejecting states, our 

choice will not influence the calculating power. 

As we have already demonstrated, there are languages which are not recursively enumerable. This means that 

these languages cannot be generated by a generative grammar, and cannot be accepted by Turing machines. 

Also, there are functions, which cannot be computed by Turing machines. There is a well known example: the 

halting problem. There is a computer program given with an input, decide whether the program stops running 

after a while, or goes into an infinite loop. The same problem with Turing machine appears to be the following: 

given a description of a Turing machine and the input word, decide whether the Turing machine stops running 

or keeps on running forever. Let us denote the description of a Turing machine with dTM and the input word with 

w. The problem is to create a Turing machine which decides about each input word dTM#w whether or not the 

Turing machine TM goes into an infinite loop with the input word w. It has been shown that this problem cannot 

be decided by a Turing machine, so there is no universal algorithm to decide if a given computer program goes 

into an infinite loop or not. The equivalent problem is to create a Turing machine which accepts an input word 

dTM#w, if the Turing machine TM stops with the input word w. As one can see, computing/calculating a function 

or accepting a language is not so distant from each other. We also have to point out that the halting problem 

cannot be solved, because we suppose that the Turing machine has an infinite tape. The problem can be solved 

in a computer with a finite memory, however, the algorithm is not efficient in practice. We have already shown 

that there are functions which cannot be algorithmically computed, consequently there are problems which 

cannot be solved. However, there are many problems, which can be solved, and we would like to know the 

complexity of the algorithms computing the solutions. For this reason, scientists have introduced the time 

complexity of the algorithms. The time complexity of an algorithm is not a constant number. For a longer input 

the Turing machine needs longer time to compute, so the time complexity of an algorithm is a function for each 

algorithm, and the parameter of the function is the length of the input word w. This length is commonly denoted 

by n, so n = ∣ w∣ , and the time complexity of the Turing machine TM is denoted by T(n). We can investigate 

the space complexity of an algorithm as well. Let us denote by S(n) the function which shows how many cells 

we use on the tape of the Turing machine TM for an input word of length n. Of course, the time complexity and 

the space complexity are not independent from each other. If the time is limited, we have a limitation on the 

number of steps, so we can go to a limited distance from the initial position on the tape, which means that the 

space is also limited. The most important time complexity classes are the followings: 

• constant time, when the calculating time is fixed, does not depend on the length of the input, denoted by O(1), 

• logarithmic time, when the calculating time is not more than a logarithmic function of the length of the input 

word, denoted by O(log n), 
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• linear time, when the calculating time is not more than a linear function of the length of the input word, 

denoted by O(n), 

• polynomial time, when the calculating time is not more than a polynomial function of the length of the input 

word, denoted by O(nk), 

• exponential time, when the calculating time is not more than an exponential function of the length of the input 

word, denoted by O(2nk). 

Evidently, we can have the same complexity classes for the space used by a Turing machine, and most of our 

computer programs are deterministic, so these complexity classes can be similarly defined for deterministic 

Turing machines, as well. We know that the nondeterministic and the deterministic Turing machines have the 

same computational power, but we do not know if the problems which can be solved with nondeterministic 

Turing machines in polynomial time, and the problems which can be solved with deterministic Turing machines 

in polynomial time are the same or not. This is a major problem in algorithm theory, and it is called P = NP? 

problem. 

Our last section is about the linear bounded automaton, which is a Turing machine with linear space complexity, 

and has a special role in the study of context-sensitive languages. 

4. 6.4. Linear Bounded Automata 

In this section, we present a special, bounded version of the Turing machines, by which the class of context-

sensitive languages can be characterized - as we already mentioned in Subsection. This version of the Turing 

machine can work only on the part of the tape where the input is/was. These automata are called linear bounded 

automata (LBA). 

Definition 36. Let LBA = (Q, T, V, q0, ♯, δ, F) be a Turing machine, where 

δ : Q × (V \ {♯}) → 2Q×V×{Left, Right, Stay} 

and 

δ : Q × {♯} → 2Q×{♯}×{Left, Right, Stay}. 

Then LBA is a (nondeterministic) linear bounded automaton. 

One can observe that ♯ signs cannot be rewritten to any other symbol, therefore, the automaton can store some 

results of its subcomputations only in the space provided by the input, i.e., in fact, the length of the input can be 

used during the computation, only. 

Example 59. Give an LBA that accepts the language {aibici∣ i ∈  ℕ}. 

Solution: 

Idea: 

• The automaton rewrites the first a to A, and changes its state, looks for the first b. 

• The automaton rewrites the first b to B, and changes its state, looks for the first c. 

• The automaton rewrites the first c to C, and changes its state, looks (backward) for the first a. 

• The capital letters A,B,C are read without changing them. 

• The above movements are repeated. 

• If finally only capital letters remain between the border ♯ signs, then the automaton accepts (the input). 

Formally, let 

LBA = ({q0, q1, q2, q3, q4, qf}, {a,b,c}, {a,b,c,A,B,C,♯}, q0, ♯, δ, {qf}) 
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be a deterministic LBA, where δ consists of the next transitions: 

1. δ (q0, ♯) = (qf, ♯, Right) – the empty word is accepted by LBA. 

2. δ (q0, a) = (q1, A, Right) – the first (leftmost) a is rewritten to A and LBA changes its state. 

3. δ (q0, B) = (q0, B, Left) – the capital letters B and C are skipped in state q0, 

4. δ (q0, C) = (q0, C, Left) – by moving the head to the left. 

5. δ (q1, a) = (q1, a, Right) – letter a is skipped in state q1to the right. 

6. δ (q1, B) = (q1, B, Right) – capital B is also skipped. 

7. δ (q1, b) = (q2, B, Right) – the leftmost b is rewritten by B and the state becomes q2. 

8. δ (q2, b) = (q2, b, Right) – letter b is skipped in state q2to the right. 

9. δ (q2, C) = (q2, C, Right) – capital C is also skipped in this state. 

10. δ (q2, c) = (q3, C, Left) – the leftmost c is rewritten by C and LBA changes its state to q3. 

11. δ (q3, a) = (q3, a, Left) – letters a,b are skipped in state q3 

12. δ (q3, b) = (q3, b, Left) – by moving the head of the automaton to the left. 

13. δ (q3, C) = (q3, C, Left) – capital letters C,B are skipped in state q3 

14. δ (q3, B) = (q3, B, Left) – by moving the head of the automaton to the left. 

15. δ (q0, A) = (q3, A, Right) – the head is positioned after the last A and the state is changed to q0. 

16. δ (q4, B) = (q3, B, Right) – if there is a B after the last A the state is changed to q4. 

17. δ (q4, B) = (q4, B, Right) – in state q4capital letters B and C are skipped 

18. δ (q4, C) = (q4, C, Right) – by moving the head to the right. 

19. δ (qf, ♯) = (q4, ♯, Left) – if in q4there were only capital letters on the tape, LBA accepts. 

The work of the automaton can be described as follows: it is clear by transition 1, that λ is accepted. 

Otherwise the head reads the first letter of the input: if the input starts with an a, then it is replaced by A and q 1 

is the new state. If the first letter of the input is not a, then LBA gets stuck, i.e., it is halting without acceptance, 

since there are no defined transitions in this state for the other input letters. 

In state q 1 LBA looks for the first b by moving to the right (skipping every a and B, if any; and halting without 

acceptance by finding other letters before the first b). When a b is found it is rewritten to a B and the automaton 

changes its state to q 2. 

In q 2 the first c is searched, the head can move through on b's and C's (but not on other letters) to the right. 

When it finds a c it rewrites by a C and changes the state to q3 and starts to move back to the left. 

In q 3 the head can go through on letters a,B,b,C to the left and when finds an A it steps to the right and the state 

becomes q 0. In q0if there is an a under the head, then it is rewritten by an A and the whole loop starts again. 

If in q 0 a letter B is found (that could happen when every a is rewritten by an A already), LBA changes its state 

to q 4. In this state by stepping to the right LBA checks if every b and c is already rewritten and if so, i.e., their 

number is the same as the number of a's and their order was correct (the input is in the language a*b*c*), then 

LBA reaches the marker ♯ sign after the input and accepts. 

When at any stage some other letter is being read than it is expected (by the previous description), then LBA 

halts without accepting the input. 
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Thus, the accepted language is exactly {aibici∣ i∈  ℕ}. 

To establish a connection between the classes of context-sensitive languages and linear bounded automata we 

present the following theorem. 

Theorem 46. The class of languages accepted by linear bounded automata and the class of context-sensitive 

languages coincide. 

Proof. We do not give a formal proof here, instead we present the idea of a proof. A context-sensitive language 

can be defined by a monotone grammar. In a monotone grammar (apart from the derivation of the empty word, 

if it is in the language), the length of the sentential form cannot be decreased by any step of the derivation. 

Consequently, starting from the derived word, and applying the rules in a way which is an inverse, the length is 

monotonously decreasing till we obtain the start symbol. In this way every context-sensitive language can be 

accepted by an LBA. 

The other way around, the work of an LBA can be described by a grammar, working in inverse way of the 

generation (starting from a word the start symbol is the target). These grammars are similar to the previously 

used monotone grammars, and thus, if an LBA is accepting a language L, then L is context-sensitive. 

QED. 

Actually, there are other models of LBA, in which the workspace (the maximal tape-length during the 

computation) is limited by c1 · ∣ w∣  + c0, where w is the input and c0, c1 ∈  ℝ constants. The accepting power of 

these models are the same as of those that have been presented. 

However, the deterministic model is more interesting, since it is related to a long-standing and still open 

question. 

It is known that every context-sensitive language can be accepted by deterministic Turing machines, using at 

most c2· ∣ w∣ 2 + c1 · ∣ w∣  + c0 space during the computations, where c2, c1, c0 are constants. However, it is 

neither proven nor disproved that deterministic linear bounded automata (using c1 · ∣ w∣  + c2 space) can 

recognize every context-sensitive language. This is still a famous open problem. 

Exercise 85. Give a linear bounded automaton that accepts the language 

{aibjaibj∣ i, j ∈  ℕ}. 

Exercise 86. Give a linear bounded automaton that accepts the language 

{a2i∣ i ∈  ℕ}, 

i.e., the language of powers of two in unary coding. 

Exercise 87. Give a linear bounded automaton that accepts the set of primitive words over the alphabet {a,b}. 

(A word w is primitive if it is not of the form un for any word u≠ w.) 
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