Oktatásfejlesztési és –technológiai kutatások

Nádasi András
MÉDIAINFORMATIKAI KIADVÁNYOK
Oktatásfejlesztési és –technológiai kutatások

Nádasi András

Eger, 2013
Korszerű információtechnológiai szakok magyarországi adaptációja

TÁMOP-4.1.2-A/1-11/1-2011-0021

Lektorálta:
Nyugat-magyarországi Egyetem Regionális Pedagógiai Szolgáltató és Kutató Központ

Felelős kiadó: dr. Kis-Tóth Lajos
Készült: az Eszterházy Károly Főiskola nyomdájában, Egerben
Vezető: Kérész László
Műszaki szerkesztő: Nagy Sándorné
1. Bevezetés ... 9
 1.1. Cél ... 9
 1.2. Kompetenciák .. 9
 1.3. Az ismeretanyag .. 10

2. Az oktatástechnológiával és –tervezéssel kapcsolatos kutatások tipológiája ... 13
 2.1 Célkitűzés és kompetenciák 13
 2.2 Tananyag .. 13
 2.2.1 Az iskolai elektronikus tanulási környezethez kapcsolt kutatásokról ... 15
 2.2.2 Filozófiai feltevések az oktatástechnológia kutatásához 20
 2.2.3 Az oktatástechnológiai kutatások kvalitatív módszerei 23
 2.2.4. A kutatások cél és módszer szerinti osztályozása, tipológiája 28
 2.3. Összefoglalás ... 30
 2.4 Önellenőrző kérdések ... 33

3. Az oktatástechnológia fejlődése, modelljei, terminológiai és értelmezési kérdések .. 35
 3.1 Célkitűzés és kompetenciák 35
 3.2 Tananyag ... 35
 3.2.1 A programozott tanítással kezdődött 36
 3.2.2 Az oktatási rendszerfejlesztés, az ADDIE modell és a követők .. 39
 3.2.3 A Human Performance Technology 45
 3.3 Összefoglalás ... 50
 3.4 Önellenőrző kérdések ... 51

4. Az audiovizuális oktatással és a programozott tanulással kapcsolatos alapkutatások .. 53
 4.1 Célkitűzés és kompetenciák 53
 4.2 Tananyag ... 53
 4.2.1 A taneszközök és az audiovizuális eszközök generációi 55
4.2.2 A programozott tanítás és az oktatógépek .. 64

4.3 Összefoglalás ... 71

4.4 Önellenőrző kérdések .. 75

5. A multimédia, a számítógépes tanulás, az IKT eredményessége és hatékonysága 77

5.1 Célkitűzés és kompetenciák .. 77

5.2 Tananyag ... 77

5.2.1 Multimédia források, oktató programok .. 79

5.2.2 A számítógépes tanulás módozatai ... 82

5.2.3 A e-tanulás és az IKT ... 91

5.3 Összefoglalás ... 94

5.4 Önellenőrző kérdések .. 98

6. Curriculum-design, oktatócsomagok, programcsomagok, taneszköz-, multimédia-, és pedagógiai rendszerek 101

6.1 Célkitűzés és kompetenciák ... 101

6.2 Tananyag .. 101

6.2.1 A tankönyvek, hagyományos és elektronikus taneszközök osztályozása 102

6.2.2 Az oktatóprogram, a taneszköz-rendszer és a multimédia oktatócsomag 109

6.2.3 A pedagógiai rendszer és a programcsomag ... 111

6.3 Összefoglalás ... 115

6.4 Önellenőrző kérdések .. 116

7. Oktatástechnológiai források, adatbázisok és e-szolgáltatások .. 119

7.1 Célkitűzés és kompetenciák ... 119

7.2 Tananyag .. 119

7.2.1 A Magyar Elektronikus Taneszköz Adatbázis ... 123

7.2.2 A Calderoni on-line Elektronikus tanulási Forráskezelő Rendszer 128

7.2.3 A Sulinet Digitális Tudásbázis .. 136

7.2.4 Az Interaktív Oktatástechnika Portál ... 137

7.3 Összefoglalás ... 138
7.4 Önellenőrző kérdések

8. A tudományos publikációk elérésének, elemzésének, összegzésének módszerei

8.1 Célkitűzés és kompetenciák

8.2 Tananyag

8.2.1 A digitalizált szakirodalom- és a szekunderkutatás fontossága

8.2.2 Bibliográfia: tudományos publikációk elemzése és összegzése

8.3 Összefoglalás

8.4 Önellenőrző kérdések, gyakorlati feladatok
1. BEVEZETÉS

1.1. CÉL

A hallgató ismerje az oktatástervezés és oktatástechnológia tudományterületen egyre növekvő számú publikációk elektronikus forrásadatbázisait, a jelentős tudományos publikációkat. A kurzus során a hallgatók sajátítsák el az oktatásfejlesztési, és technológiai tárgyú tudományos publikációkhoz való hozzáférés, elemzés, értékelés és összefoglalás leghatékonyabb módszereit. Legyenek képesek az adekvát kutatási eredményeknek a szakmai gyakorlatban történő alkalmazására.

1.2. KOMPETENCIÁK

Tudás:
- az OT kutatások osztályozása; fogalmának értelmezése;
- az OT szakinformációs források, szolgáltatások, szakmai testületek, fórumok megnevezése;
- az alapkutatás, kísérlet, vizsgálat, fejlesztés, innováció megkülönböztetése;
- a hatékonyság, eredményesség, gazdaságosság definiálása;
- a hagyományos, audiovizuális és elektronikus oktatómédia és rendszerek jellemzése;
- a leggyakrabban idézett, és legújabb tudományos közlemények lényegének összefoglalása, szintézise;
- az OT kutatási és fejlesztési módszerek, eljárások és eredmények kritikája, értékelése;
- a bizonyított elméletek, bevált stratégiák és modellek alkalmazása.

Attitűdök/nézetek
- a rendszereszméllet elfogadása és alkalmazása;
- meggyőződés az OT pedagógiai és pszichológiai megalapozottságáról;
- a folyamatos szakirodalmi tájékozódás igénye, publikációs szándék;
- részvételi szándék szakmai közösségekben, fellépés fórumokon;
- aktív csapatmunka vállalása konkrét projektekben,
Képességek:

- OT modellek felvázolása és interpretálása;
- szaktudományos közlemények elemzése;
- szakirodalmi összefoglalók megírása;
- „state of the art” prezentációk készítése, előadása;
- IKT megoldások meggyőző ajánlása, alátámasztása, érvelés;
- OT szakinformációs források és szolgáltatások használata;
- szignifikáns tudományos kutatási eredmények alkalmazására vonatkozó javaslat kidolgozása;
- részfeladat önálló elvégzése a pedagógiai technológiai rendszertervezési gyakorlatban.

1.3. **AZ ISMERETANYAG**

1. Bevezetés
2. Az oktatástechnológiával és –tervezéssel kapcsolatos kutatások tipológiája;
3. Az oktatástechnológia fejlődése, modelljei, terminológiai és értelmezési kérdések;
4. Az audiovizuális oktatással és a programozott tanulással kapcsolatos alapkutatások;
5. A multimédia, a számítógépes tanulás, és az IKT eredményessége és hatékonysága;
6. Az összehasonlító vizsgálat és a fejlesztő kutatás, médiakiválasztás, és értékelés;
7. Az oktatócsomagok, taneszköz-, multimédia-, és pedagógiai rendszerek;
8. A távoktatást segítő e-tanulási környezet modelljei, a hálózati tanulás eredményessége;
9. Oktatástechnológiai szakinformációs források, adatbázisok és eszolgáltatások;
10. A tudományos publikációk elérésének, elemzésének, összegzésének módszerei;
11. OT kutatás, fejlesztés és innováció, a kutatási eredmények hasznosítási lehetőségei;
12. Összefoglalás
Módszerek:
- előadás, szeminárium, projektmunka

A tanegység teljesítésének feltételei:
- az évfolyamdolgozatok elkészítése;
- a beszámolók megtartása;
- eredményes kollokvium.

Kötelező irodalom:

Ajánlott irodalom:
Robert A, Reiser: History of Instructional Design and Technology, Educational Technology Research and Development Volume 49, Number 1
The Field of Educational Technology http://www.gse.pku.edu.cn/qwang/main/The%20Field%20of%20Educational%20Technology.htm
2. AZ OKTATÁSTECHNOLÓGIÁVAL ÉS–TERVEZÉSSEL KAPCSOLATOS KUTATÁSOK TIPOLÓGIÁJA

2.1 CÉLKITŰZÉS ÉS KOMPETENCIÁK

A fejezet végére a hallgató képes lesz:

- az OT kutatások cél és módszer szerinti osztályozására; a lineáris és ciklikus kutatási modellek leírására;
- a kvantitatív és a kvalitatív kutatás közötti lételméleti és ismeretelméleti különbség kimutatására, a fejlesztő kutatás értelmezésére;
- az iskolai elektronikus tanulási környezethez kapcsolt kutatások néhány következtetésének interpretálására;
- az oktatástechnológiai kutatások kvalitatív módszereinek felsorolására és jellemzésére;
- az OT kutatási és fejlesztési módszerek, eljárások és eredmények kritikájára, értékelésére;

2.2 TANANYAG

A Handbook of standard terminology and a guide for recording and reporting information about educational technology meghatározása szerint az oktatásfejlesztés az oktatástechnológiai kutatások módszertana, vagy úgy is
mondhatnánk, technológiája. Ez megmagyarázza azt a sajátos helyzetet, hogy az oktatástechnológiai kutatások értékes hányada, fejlesztő kutatás, amelynek mindig van eredménye, azonban az audiovizuális technika, a számítógépek és az Internet miatt érezett kezdeti lelkesedéstől és a nagyszámú kutatástól, mely az oktatásban betöltött szerepüket vizsgálta, az elmúlt harminc évben a diákok iskolai teljesítménye csupán kis mértékben fejlődött. Ez nem jelenti azt, hogy sem technológiára, sem kutatásra ne áldozzunk. Mielőtt a kutatások osztályozását megkísérelnénk elvégezni, fogadjuk el kiindulási alapnak, hogy legalább az oktatástechnológiai kutatói – legalábbis a korábbi közoktatási innovációk életútjának szisztematikus elemzése eredményeként - a következőkben egyetértzenek:

- A mindenkori technológiai fejlesztések eredményei, manapság az új információs és kommunikációs technológiák és médiumok, különösen a számítógépes hálózati és multimédia telekommunikációs rendszerek (IKT), többnyire nem a pedagógiai szükségletek kielégítése céljából keletkeznek. Az oktatási célú alkalmazások meghatározása, a lehetőségek folyamatos feltárása azonban szükségszerűen megoldandó oktatástechnológiai feladat.

- A tanítás-tanulás, iskoláztatás a tanulókért van, ezért minden oktatási rendszer elem tervezésekor, beiktatásakor, legyen az elvárás, célkitűzés, tananyag, feladat, módszer, taneszköz, média, ellenőrzés, értékelség vagy bármilyen, szándékos nevelési célú humán rámáhatás, figyelembe kell venni az adott tanuló ill. tanulócsoport és az intézményesített oktatás jellemzőit, és ezért ezeket lényegi tervezési paraméterként kell kezelni az oktatás- és médiafejlesztési programok során.

- Az iskolai tanulás közösségben realizálódik. A tanulást elősegítő folyamatok során akár közösségi, akár differenciált munkáról, egyéni tanulásról van szó, számos bevált, médiáfüggetlen technika, eljárás és módszer alkalmazására sor kerül, pl. projektmunka, csoport-szervezés, magyarázat, megbeszélés, vita. Természetesen tameszközökre, forráskra alapozott eljárásokra is gyakran sor kerül, általános a tankönyv, munkafüzet. Kevésbé a számítógép, a kísérletezés, számítógépes szimuláció, audiovizuális szemléltetés, multimédia programok használata. Az oktatástechnológiai tervezésben nem szabad kizárólag, vagy egyoldalúan az új médiumokra alapozott megoldásokra szorítkozni.

- Az oktatástechnológiai kutatásoknak az médiumok és médiakombinációk hatékonyságának és az eredményes tanulást biztosító médiaeljelmezőknek a kimutatására, az optimális tanulási feltételek (környezet) meghatározására, konkrét tantervi célok elérését, tartalmak és kompetenciák elsajátítását bizonyíthatóan segítő programcsomagok ill. új információ-
Az oktatástechnológiával és –tervezéssel kapcsolatos kutatások tipológiája

dörlő és készségfejlesztő tananyagok, pedagógiai rendszerek, kifejlesztésére kell irányulnia.

2.2.1 Az iskolai elektronikus tanulási környezethez kapcsolt kutatásokról

Az oktatástechnológia, az ezredfordulót követően is, annak a tudománia, hogy a „megfelelő technológiai folyamatok és erőforrások megteremtésével, felhasználásával és szervezésével támogatjuk a tanulást, növeljük a teljesítményt”. (Januszewski and Molenda, 2008.) A meghatározásban a folyamat cselekmények sorozatát jelenti, és egy meghatározott eredményre vezet. Ezen cselekvések közé tartozik az oktatási erőforrások megtervezése, létrehozása, felhasználása és szervezése. Az erőforrások alatt gyakran a high-tech eszközként értik (például digitális média, számítógépes szoftver, vagy oktatási célokra tervezett/felhasznált tanulói rendszerek). Azonban az erőforrások tágabb értelmezése magába foglalja az embereket, a közösséget, a politikát stb. is. Az oktatásban használatos technológiák fejlődése, különösen a számítógépes technológiák, jelentős változásokat okoztak az oktatási rendszerekben, a számítógépek napról napra fontosabb szerepet játszanak a tanításban és a tanulásban.

Általános elvárás, hogy az oktatási szektor is biztosítsa a 21. században kulcsfontosságúnak tartott IKT kompetencia elsajátításához szükséges infrastruktúrái háttéret, az információkhoz, tudáshoz való gyorsabb és hatékonyabb hozzáférést, továbbá a különféle technológiai eszközök módszertani integrációjával megvalósítsák a tudás innovatív módon történő elsajátítását, tudás-gazdag tanulási környezet kialakítását. „A technológia tanítási, tanulási folyamatba történő integrálása során lényeges elem, hogy ne a technológia határozza meg a változtatások irányát, az a változtatások katalizátora legyen. A technológia oktatási használatának egyik legnagyobb csapadája, amikor előtérbe kerül a technika, és csak később merül fel problémaként, hogy az adott eszköz hogyan lehet az oktatás részvévé tenni. Bár az infrastruktúra megléte egymában nem oldja meg az oktatás problémáit, hozzájárulhat a szükséges módszertani változtatások megépíteléhez, amelyek segítségével megvalósítható az oktatás hatékonyságának növekedése” (Molnár, 2011).

Az iskolai IKT infrastruktúra szemléletetésére, amely az IKT kutatások metodikáját is jelentősen befolyásolhatja, az USA és Magyarország vonatkozásában néhány adatot fontosnak tartunk bemutatni, mivel mind az USA, mind az EU célként fogalmazta meg és támogatja az IKT eszközök, és ezen eszközök hatékonysága alapján lehetővé tevő kompetenciák oktatási integrációját. Az USA Oktatási Minisztériuma által nemrégiben megjelentetett jelentés szerint 2008 őszén az összes állami iskola 97%-ban található legalább egy darab (de lehet
több is), osztályteremben oktatási céljára elhelyezett számítógép, és az iskolák 58%-a rendelkezik mozdítható kézikocsira szerelt laptoppal. A diákok és az Internet hozzáféréssel rendelkező gépek aránya 3,1 az egyhez. A számítógép mellett a többi technikai eszköz is széleskörűen alkalmazottak az oktatáshoz, az iskolák az alábbi százzalékokban rendelkeznek ezekkel az eszközökkel: DLP és LCD projektor – 97%, videó konferencia egység – 22%, interaktív tábla – 73%, classroom response systems /tantermi felügyeleti rendszer – 38%, és digitális kamera – 93%. Az oktatógépektől a személyi számítógéppig, az email használatától a Web 2.0-ig, az audiovizuális eszközökktől az interaktív multimédiáig, az új technológiák fejlesztése, könnyebb hozzáféréstsegélyűk, növekvő funkcionálisuk mind hozzájárult az emberek azon növekvő várokatásához, hogy a nagy előrelépések az oktatásban és tanulásban a technológiák fejlődésével párhuzamosan fognak történni (Spector, 2001).

Magyarországon, az MTA-SZTE Képességkutató Kutatócsoport, ill. az SZTE Neveléstudományi Intézet munkatársai által, az Iskolakultúra folyóirat 2011/11-12. számában közöttek, kiváló kutatási beszámoló szerint (Tóth E. – Molnár Gy. – Csapó B.: Az iskolák IKT felszereltsége – helyzetkép országos reprezentatív mintha alapján), a helyzet a következő: „Az adatok országos szintű elemzése alapján megállapítható, hogy az iskolák csaknem felében (50,3 százalék) egy, míg közel harmadában (31,7 százalék) kettő számítógépes terem található. Az iskolák 6,2 százalékában egyáltalán nincs számítógépes terem... Az iskolák egytizedében (11,9 százalék) van három vagy annál több számítógépes szaktanterem. Az iskolák által első helyen megnevezett számítógépes szaktanterem csak nem minden esetben asztali számítógépekkkel felszerelt IKT-terem. E termek egyharmadában mobil számítógép (laptop) is segíti a tanulást és tanítást. Az első helyen megnevezett termek kétharmadában van projektor, harmadában az egyéni multimédiás eszközöktől való tanulást segítő fülhallgató és egytizedében webkamera. A termek elenyésző hányada felszerelt az azonnali visszacsatolást lehetővé tevő szavazórendszerrel. A második helyen megnevezett IKT-szaktanterem esetében hasonló kép bontakozik ki. E termek esetében is megfigyelhető az asztali számítógépek „uralma”. A termek egytödében van mobil számítógép (laptop), és az elsőként megnevezett IKT-szaktanteremhez képest arányában kevesebben terem, a termek fele van projektoral is felszerelve. A kommunikációt segítő fülhallgató és webkamera aránya hasonló az elsőként megnevezett szaktanteremhez képest (25, illetve 10 százalék)... Az iskolák 69 százalékában a nem IKT-tantermekben átlagosan egy számítógép található, negyedében egy sem Átlagosan az iskolák 61 százalékában nemcsak a számítógépes szaktanteremekben, hanem a többi tanteremben is van lehetőség a világhálóhoz csatlakozni. A nem számítógépes termek felszerelése vonatkozásában az IKT eszközök közül az asztali számítógép fordul elő leggyakrabban (43 százalékukban), míg az asztali gép helyett vagy mellett az intézmények 36 százalékában van laptop. Az iskolák
Az oktatástechnológiával és -tervezéssel kapcsolatos kutatások tipológiája

Az oktatástechnológiával és -tervezéssel kapcsolatos kutatások irányát és metódikáját megszabó kulcsfaktorok között fontos tehát az adott elektronikus tanulási környezet, infrastruktúra állapota, a tartalomipar és szolgáltatás rendszere, de három nagy kutatás (OECD 1999-2001.) is megállapította, hogy világoszter nem az infrastruktúra megléte vagy hiánya, hanem sokkal inkább a tanárok szerepvállalása vagy ellenállása határozza meg az oktatási módszerterjesztés, újítások elterjedését, illetve a tanulási teljesítményeket. Bár két ország IKT ellátottsági adatai között nagy a különbség, a már említett, USA National Center for Education Statistics 2010-es adatai szerint 2008-ban a 17 éves amerikai gyerekek olvasási/szövegértési és matematikai pontszámai alig haladják meg a hetvenes évek elején elért pontszámokat. Ezek az eredmények eléggé szívüldítők, figyelembe véve, hogy a hetvenes években a legtöbb iskolában még egyáltalán nem volt számítógép. Miután statisztikailag jelentős azoknak az oktatástechnológiai kutatásoknak a száma, ahol nem sikerült bizonyítani a tanítás és a tanulás fejlődését, egyre több kutató kérdőjelezi meg az ilyen jellegű kutatások természetét. (Heng Luo: Qualitative Research on Educational Technology: Philosophies, Methods and Challenges 2011.) A hazai és nemzetközi IKT specifikus kutatási adatok sem megnyugtatóak, miként az OECD PISA 2009 adatbázisában „A számítógép használat hatása a digitális szövegértésre” ábra mutatja:

1. ábra: A számítógép használat hatása a digitális szövegértésre

Az alapproblémára fókuszálva egyértelmű, hogy bizonyos oktatástechnikai invesztálások eredményessége és hatékonysága megkérdőjelezhető, és gondot okoz az erre vonatkozó oktatástechnológiai kutatások eredményeinek hasznosíthatósága is.

<table>
<thead>
<tr>
<th>Országok</th>
<th>A digitális szövegértési eredmény viszonya az OECD-átlaghoz</th>
<th>A nyomtatottszövegértési eredmény</th>
<th>A két eredmény közötti pontszám-különbség (S. H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korea</td>
<td>▲</td>
<td>▲</td>
<td>28 (2.0)</td>
</tr>
<tr>
<td>Ausztrália</td>
<td>▲</td>
<td>▲</td>
<td>22 (1.8)</td>
</tr>
<tr>
<td>Új-Zéland</td>
<td>▲</td>
<td>●</td>
<td>16 (1.7)</td>
</tr>
<tr>
<td>Irország</td>
<td>▲</td>
<td>●</td>
<td>13 (2.6)</td>
</tr>
<tr>
<td>Svédország</td>
<td>▲</td>
<td>●</td>
<td>13 (2.1)</td>
</tr>
<tr>
<td>Island</td>
<td>▲</td>
<td>▲</td>
<td>12 (0.9)</td>
</tr>
<tr>
<td>Maka-Kína</td>
<td>▼</td>
<td>▼</td>
<td>5 (0.8)</td>
</tr>
<tr>
<td>Belgium</td>
<td>▲</td>
<td>▲</td>
<td>1 (1.6)</td>
</tr>
<tr>
<td>Japán</td>
<td>▲</td>
<td>▲</td>
<td>−1 (2.9)</td>
</tr>
<tr>
<td>Franciaország</td>
<td>●</td>
<td>●</td>
<td>−1 (4.8)</td>
</tr>
<tr>
<td>Norvégia</td>
<td>●</td>
<td>▲</td>
<td>−3 (2.0)</td>
</tr>
<tr>
<td>Spaanyolország</td>
<td>▼</td>
<td>▼</td>
<td>−5 (2.8)</td>
</tr>
<tr>
<td>Dánia</td>
<td>▼</td>
<td>●</td>
<td>−6 (1.9)</td>
</tr>
<tr>
<td>Austria</td>
<td>▼</td>
<td>▼</td>
<td>−12 (3.0)</td>
</tr>
<tr>
<td>Chile</td>
<td>▼</td>
<td>▼</td>
<td>−15 (2.4)</td>
</tr>
<tr>
<td>Hongkong-Kína</td>
<td>▲</td>
<td>▲</td>
<td>−18 (2.4)</td>
</tr>
<tr>
<td>Magyarország</td>
<td>▼</td>
<td>●</td>
<td>−26 (2.9)</td>
</tr>
<tr>
<td>Lengyelország</td>
<td>▼</td>
<td>▲</td>
<td>−37 (2.2)</td>
</tr>
<tr>
<td>Külföldi</td>
<td>▼</td>
<td>▼</td>
<td>−43 (2.6)</td>
</tr>
</tbody>
</table>

▲ Statisztikailag szignifikánsan magasabb az OECD-átlagnál.
● Statisztikailag szignifikánsan alacsonyabb az OECD-átlagnál.
▼ Statisztikailag nem különbözik az OECD-átlagjától.
Megjegyzés: A statisztikailag szignifikáns különbségek telkököt betűpusszal vannak szedve.
Forrás: OECD database, Figure VI.1.21.

2. ábra: A digitális és nyomtatott szövegértés
Az említett, korrekt tanulmányban olvashatjuk: „Ha csak azt vizsgáljuk, hogy a tanulók hány százaléka férhet számítógéphez és internethez az iskolában, akkor azt látjuk, hogy ez az arány Magyarországon igen magas, a tanulók 95,2%-a jut számítógéphez, és 95,6%-uk válaszolta azt, hogy van internet-hozzáférési lehetősége az iskolában. OECD viszonylatban ezek az arányok 93,1 és 92,6%. Ugyanakkor azoknak a tizenöt éves tanulóknak az aránynak, aki használjik is a számítógépet és az internetet az iskolában, ennél jóval alacsonyabb: 69,3% a számítógép használatra és 69,5% az internet használatra vonatkozóan.”

![Diagram PISA fordítása]

3. ábra: Vida Júlia 2011
2.2.2 Filozófiai feltevések az oktatástechnológia kutatásához

Azt a kérdést, hogy „Az oktatástechnológiai kutatás társadalmilag relev ván?” Thomas C. Reeves tette fel „Az oktatástechnológiai kutatás kérdéseinek megkérdőjelezése” c. tanulmányában: „A társadalmi relevancia olyan témá, amelyen sokat lehet vitatkoznak. A kor, a faji hovatartozás, a nem, a szocio ökonómiai státusz, az iskolai végzettség, a vallás, a politikai elkötelezettség és egyéb faktorok mind befolyásolják az egyén számára a szociális relevancia értelmézését bármely kutatási területen. Mindamellett az elemzés kedvéért kísér letet teszek – tekintettel a tudományos vizsgálatokra – a társadalmi relevancia meghatározására. A definícióm a tudományos kutatást irányító alapelveken nyugszik:

- A tudomány olyan kognitív struktúrából álló ideológia, amely figyelemben veszi a valóság természetét, a vizsgálat folyamatait, a bizonyítást és a szakmai lektorálást.
- A valóságról alkotott elképzelések különbözőnek az egyén tudományról alkotottelfogása miatt, például: a realizmus fenntartja, hogy létezik objektív valóság, az instrumentalizmus feltételezése szerint a valóság
leolvasható a mérőeszközökéről, a relativizmus szerint az a valóság, amire a társadalom rámondja, hogy az.

- A tudományos kutatás társadalmi tevékenység, mely rendelkezik bizonyos standardokkal és normákkal: a kutatás során az emberek szándékos sérülést nem szenvedhetnek, más kutatók is meg tudják ismételni stb.
- A társadalmilag felelős kutatás az oktatás területén ragaszkodik a fenteből felsorolt alapelvekhez, ugyanakkor olyan problémákkal foglalkozik, melyek az egyén vagy a csoportok életminőségét csökkentik a társadalmon belül, és köztük különösen azokkal, melyek az oktatást vagy az egyén fejlődését érintik.”

Heng Luo szerint lételmélethez és az ismeretelmélethez kapcsolódó filozófiai feltevések befolyásolják az oktatási stratégiákat és módszereket, és így nagy hatást gyakorolnak az azokat vizsgáló kutatásokra is. Szerinte négy fő filozófiai nézőpontot lehet azonosítani az oktatástechnológiai kutatás irodalmának alapján. A filozófiai nézőpontok: objektivizmus és realizmus; idealizmus és racionálizmus; relativizmus; pragmatizmus. A négy filozófiai perspektíva lételméleti és ismeretelméleti feltevéseit és az oktatáskutatásra gyakorolt hatásait a következő „A lételmélet, az ismeretelmélet és a négy filozófiai perspektíva” táblázat foglalja össze.

<table>
<thead>
<tr>
<th>Perspektívák</th>
<th>Lételmélet</th>
<th>Ismeretelmélet</th>
<th>Implikációk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objektivizmus és realizmus</td>
<td>A valóság az entitások közötti tulajdonságok és viszonyok vonatkozásában létezik.</td>
<td>A tanulás újraalkotja a helyes reprezentációkat az emberi elmében, például a tulajdonságokat és a viszonyokat.</td>
<td>Egy oktatási intervenció hatékonyságát meghatározhatjuk, ha egy sor előre meghatározott viselkedés segítségével objektíven felmérjük a tanulók tudásbeli jártasságát.</td>
</tr>
<tr>
<td>Idealizmus és racionalizmus</td>
<td>Az agyunk az érzékelésünk által alakítja a világot. A valóság egy mentális reprezentáció.</td>
<td>A tudást az intellektuális és a deiktív értelmezés által szerezhetjük meg, nem az érzéki tapasztalatokkal.</td>
<td>Az oktatás-kutatásnak át kellene helyeznie a fókuszát: a tanuló viselkedésének változása helyett a tanuló elméjében bekövetkező mentális-strukturális és szervezeti változásokat kellene vizsgálnia.</td>
</tr>
<tr>
<td>Relativizmus</td>
<td>Abszolút igazság és valóság nem létezik. A kísérleti és fizikai események jelentését a közöttük lévő kapcsolat hozza létre.</td>
<td>Az igaz és a hamis függ a megfigyelőtől és a kulturális kontextustól.</td>
<td>A kutatásokat természetes környezetben kell végezni, az oda nem tarozó változók ellenőrzése nélkül. A diákok számára lehetővé kell tenni, hogy leírják saját tapasztalataikat és egészen...</td>
</tr>
</tbody>
</table>
Az oktatástechnológiával és –tervezéssel kapcsolatos kutatások tipológiája

<table>
<thead>
<tr>
<th>Perspektívák</th>
<th>Lételmélet</th>
<th>Ismeretelmélet</th>
<th>Implikációk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pragmatizmus</td>
<td>Az igazság és a valóság időleges, örökké változó és mértékfüggő; a valódi hatásai és a gyakorlati konzekvenciai határozók meg.</td>
<td>A tudás alapvetően akcióterv, és a cél a praktikus eredmények elérése. A pragmatizmus hangsúlyozza az ismeret fejlődési és instrumentális tulajdonságait.</td>
<td>A kutatók számára biztosítja a filozófiai és a módszertani középútat, megengedi a kvantitatív és kvalitatív adatgyűjtést, illetve az elemző módszereket bizonyos kutatási feladatok elvégzéséhez.</td>
</tr>
</tbody>
</table>

4. ábra: A kvantitatív és a kvalitatív kutatás közötti lételméleti és ismeretelméleti különbség

A kvantitatív és a kvalitatív kutatás lefolytatása közötti különbség nyilvánvaló; eltérő a tudományos módszer, a kutatás eredményeinek felhasználása, az adatok összességének formája és az elemzés. A különbségek nagy része vissza vezethető a kutatók eltérő lételméleti és ismeretelméleti felfogására. Heng Luo is utal arra, hogy Johnson és Christensen szerint (2012) a lételméleti különbség a két kutatási módszer között az, hogy a kvantitatív kutatást az objektivitás hipotézisei alapján irányítják, míg a kvalitatív kutatást az a feltevés működteti, hogy a valóságot a társadalom teremti meg.

5. ábra: A társadalomkutatás lineáris modellje

A kvantitatív kutatók hisznek a valóság létezésében Ez a valóság megfigyelhető és megmérhető, mivel „a racionális megfigyelő, akik ugyanazt a jelenséget figyelik, alapvetően egyetértenek a létezésében és a tulajdonságaiiban. Ezzel
ellentétben a kvalitatív kutatók tagadják a mindenre kiterjedő valóságot, és támogatják azt az elkezelést, hogy sokféle valóság létezik, melyek absztrakt mentális szerkezetek formájában foghatók fel; kísérleteken alapulnak, helyfüggőek, és specifikusak”. „Az ismeretelmélet értelmezésében a kvantitatív kutatás a természete szerint megerősítő és deduktív, mivel a tudást a feltevések empirikus megerősítése igazolja. A kvalitatív kutatás természete viszont kísérletező és induktív, mert az ismeretet a kutatók generálják vagy alkotják a szubjektív és beleérző megérzés, a kísérletezés és a megfigyelés segítségével” (Johnson és Christensen, 2012).

2.2.3 Az oktatástechnológiai kutatások kvalitatív módszerei

A közhiedelemmel ellentétben azonban, a kvalitatív nézőpontok és adatgyűjtési módszerek alkalmazásának régére nyúló hagyományai vannak az oktatástechnológia kutatásában, és napjainkban is egyre több figyelmet kap a terület kutatóitól. A valaha elfogadhatatlannak ítélt kutatási kérdések és módszerek mára elfogadottakká váltak; olyan tanulmányok jelenhetnek meg, melyek változatos kvalitatív módszereket alkalmaznak és váltakozó paradigmákon alapulnak. Például az oktatást segítő médiumok használatáról szóló tanulmányokban gyakran szerepel annak leírása, hogy a médiumokat hogyan használják fel a tanárokon, erről hogyan vélekednek a tanárok és a diákok. Az interjúkból és a megfigyelésekből is narratív adatokat idéznek. Egyre több esettanulmányban és design-alapú kutatásban jelenik meg a folyamatok, a kontextus, az attíttud, a társas kapcsolatok és a kutatók szubjektívitásának részletes jellemzése. A szakirodalomban túlnyomóan az etnográfia, az esettanulmány és a design-alapú kutatás szerepel, ezért ebben a részben az oktatástechnológia három fő kvantitatív kutatási módszerekként ezt a hármat vizsgáljuk meg. Legfőbb tulajdonságaiak, lehetőségeiket és korlátaikat elemezzük.

Etnográfia

A brit és amerikai társadalomtudományi terminológia az etnográfiait egy sajátos és komplex kutatási módszerként definiálja. Az etnográfia általános értelemben a kutatás és az írás azon formája, amelynek eredményeképpen leírás, számvétés készül az író életmódjáról, és azokéról is, akikről ő írt. „Az etnográfia tehát ebben az értelmezésében egy olyan kutatásmódszertan illetve gyakorlat, melynek alapja a résztvevő megfigyelést középpontba állító terepmunka. Az etnográfiait ugyanakkor Clifford Gertz nyomán ennél sokkal többnek is tartom, pontosabban úgy gondolom, hogy mögötte egy határozott célképet jelenik meg: a társadalmi jelenségeket lehető legmélyebben megértése és interpretációja, „sűrű leírása”; fordítás az idegen és a saját között. Az etnográfia így
tehát egy, a velünk szemben álló idegen megértésének módszere. Az interaktív etnográfia ezt a koncepciót kiegészíti a társadalmi jelenségek komplexitásának megragadására és interpretációjára szolgáló eszközként a hipertextualitással/medialitással. Az interaktív etnográfia tehát nem tárgyában, hanem módszerében különbözik az etnográfia egyéb ágaitól, pl. a cyberethnography-tól, ugyanakkor módszertani hozadéka bőségesen kamatozhat azok számára is.” (Nagy Károly Zsolt, 2006)

Az etnográfiai kutatás irányításakor a kutatóknak az adatgyűjtés miatt fel kell mérniük a környezetet, és a részévé is kell válniuk, amikor a kutatás során az egyik vagy másik résztvevővel interakcióba kerülnek.

Az oktatástechnológia esetében az etnográfiai tanulmányoknál többrnyire a résztvevő megfigyelési technikát alkalmazzák (participant observation technique), melynek során helyszíni jegyzetek formájában rögzítik az osztálytermi viselkedést, a tanári és tanulói közléseket. (A hazai mikroanálízis gyakorlatban, amely a tanári készségfejlesztés bevált eljárása, a módszer nem ismeretlen, bár nem kutatási célra alkalmazzák.) Az etnográfiai kutatás ciklikus.

6. ábra:

Az elemzést röviddel a megfigyelés után végzik, azzal a céllal, hogy azonosítsák a viselkedések, az események és a jelenségek mintázatait, s a következő megfigyelések során még jobban megvizsgálhassák ezeket. A mikroanálízis közismert módszer a tanárképzésben, egy kutatási módszernek is tekinthető. Számos esetben a kutatók mint tanárok, vagy mint közvetítők kapcsolódnak be az oktatás folyamatába. Valójában az alaposan és gondosan kimunkált etnográfia hiánya a legfőbb kritikai észrevétel az oktatástechnológiában alkalmazott etnográfiai kutatással szemben. Gyakran csak rövid ideig tartanak; hetente néhány
órán át. A kutatóknak gyakran nincs meg a forrásuk arra, hogy a vizsgált területen legyenek/éljenek hosszabb időn keresztül. Azokban a kutatásokban, ahol a kutatók egyben tanárok is, a megfigyelések, jegyzetek készítése is némi etikai aggadalma kelt. A feljegyzések írása közben kevésbé tudnak figyelni a tanításra, így potenciálisan sérülhet a résztvevők (többnyire a diákok) érdeke és jóléte.

Esettanulmány

Az esettanulmány az etnográfia egy speciális típusának is tekinthető. Az etnográfiahoz hasonlóan az esettanulmány is természetes környezetben zajlik. A megfigyelésekről, interjúkról, másolatokról, jegyzetekről készített narratív adatok használatával gazdag leírását kaphatjuk az észleleteknek, attitűdöknek, reakcióknak, kapcsolatoknak és a környezetnek. Abban azonban különbözik a legtöbb etnográfiai vizsgálattól, hogy az esettanulmányok az oktatási gyakorlat egy adott pillanatára fókuszálódnak, és annak a pillanatnak a teljes dokumentációjából próbálnak meg elméleti és szakmai betekintést nyerni. Az esettanulmányok – céljuktól függően – három kategóriába lehet sorolni.

- Értelmező (explanatory): Az értelmező esettanulmányok azt próbálják meghatározni, hogy egy gyakorlat hogyan és miért történik. Az a cél, hogy az ok és okozati kapcsolatokat felderítsék. Az eseteket arra használják, hogy megmagyarázzák, vagy kidolgozzák a feltételezett alkalmi kapcsolatokat az olyan valós intervenciókban, melyek túlságosan összetettek az alapkutatások számára.

- Feltáró (exploratory): A feltáró esettanulmány olyan helyzeteket vizsgál, melyben az értékelt beavatkozásnak nincs tisza, körülhatárolt eredmény. A kutatás fő kérdéseinek a megállapítása előtt teremtünk és adatgyűjtést végeznek; és a kutatás eredményét gyakran egy másik oktatáskutatási forma kezdetének tekintik.

- A leíró (descriptive) esettanulmányt olyan dokumentum létrehozására használják, mely megvilágítja a tapasztalat bonyolultságát, válaszokat adva egy sor – deszkriptív elméleten alapuló – kérdésre.

Az esettanulmányokat hagyományosan a kvalitatív jelentésekben használják, hogy dokumentálják és megtárgyalják a technológiai alkalmazások tervezését és implementációját. Azonban napjainkban egyre több esettanulmányt publikálnak oktatástechnológiai folyóiratokban. Ennek a jelenségnek az oka az, hogy az alap Kutatás írásai eredménye nem hat a napi oktatási gyakorlatra. Az alap Kutatások által kínált alapelvek, irányelvek túl határozatlanok ahhoz, hogy gyakorlati segítséget jelenthessenek egy adott helyzetben. Ezzel szemben egy ügynek az egyediségé és a kutatónak az adott ügyben szerzett szubjektív tapasztalata eredményezheti a környezetbe helyezett pillanat (contextualized
instance) mélységeiben valóelfogását a nagymennyiségű adatgyűjtemény és reflexió alapján. Ennek eredményeképpen az esettanulmányok erősen kötődnek helyhez és időhöz; „élköteleződést mutatnak a lokalizált tapasztalat min‐
dent elsőprő jelentősége iránt“. Az esettanulmányok az alábbi feltételek mellett tekinthetők megfelelő kutatási módszerek:

- A kutatás fókusa a „hogyan” és a „miért” kérdéseken van;
- A kutatók nem manipulálhatják a résztvevők viselkedését;
- A kontextuális feltételek kiemelkedően relevánsak a tanulmányozandó jelenséghez,
- A jelenség és a kontextus közötti határ nem egyértelmű.

Egy jó példa az oktatástechnológiai kutatásban megjelenő esettanulmányra az a tanulmány, mely a multimédiás eszközök segítségével megvalósított távoktatáshoz kapcsolódó eseteket vizsgálta (Luetkehans, 1999). Kutatási módszerként azért az esettanulmányt alkalmazták, mert az online tanulási környezet különlegessége és összetette sége kiemelkedően releváns volt a tanulmányozott jelenséghez. A felmérésekből, megfigyelésekből, felig struktúrált interjúkból, számítógépes transzkriptekből, a résztvevők kikérdezéseből és a fókuszcsoportokkal készített interjúkból összegyűjtött adatok alapján alaposan kidolgozott véleményt kínáltak az olvasóknak, bemutatva, hogy a számítógépeken és a médián alapuló technológia tulajdonságai és alkalmazásai hogyan támogatják az együttműködő tanulást az online tanulási környezetben. A kutatók saját tapasztalataira vonatkozó reflexiói is fontos adatforrásként szolgálhatnak az esettanulmányoknál, és az oktatók számára hasznos eredményeket hozhatnak hasonló helyzetben. Például Foley és Luo (2011) olyan esettanulmányt végeztek, melyben egy egyszerű oktatási iPhone alkalmazást készítettek, abból a célból, hogy vizsgálják a prototípus gyors elterjesztésének szerepét a mobil tanulási rendszer tervezésében. Az iPhone alkalmazás tervezésének és tesztelésének folyamatára vonatkozó reflexióikat is szerepeltették a tanulmányban, hogy bemutassák az általuk javasolt technológiai megoldások előnyeit és korlátait.

Az esettanulmányok, mint kvalitatív kutatási módszerek, megvannak a korlátai is. A vele szembeni általános kritika (a validitás és a megbízhatóság hiánya, az általánosításra való képesség hiánya, a nem kontrollálható elfogultság és szubjektivizmus) igazságtalan és problematikus; hiszen kialakulásában szerepet játszottak a kvantitatív kutatás standardjai is. Valójában a kontextualizált fókuszt és a szubjektív reflexiókat az esettanulmány egyedülálló értékének és erősségének kellene tekinteni. Azonban van néhány kérdés, amelyet meg kell fontolni, mielőtt esettanulmány készítése mellett döntünk. Először is az esettanulmány hajlamos túl sok, részletes adatot szolgáltatni, és mind a kutatók, mind az olvasók eltévednek benne, elvesztre a kutatás fő témáinak a
fókuszát. Másodsorban az esettanulmány nem tartozik a költséghatékony kutatási módok közé, hiszen a nagymennyiségű és részletes adatok elemzése időigényes és drága. Végül, az esetek összetettségét, komplexitását nehéz egyszerűen bemutatni, nehezen interpretálható.

A design-alapú kutatás (Design-Based Research)

A kutatóktól egyre több figyelmet kap a design-alapú kutatás (DBR) feltörekvőben lévő paradigmája, mely célul tűzte ki a gyakorlati problémákra adható „használható tudás” megalkotását (Design-Based Research Collective, DBRC, 2003). A DBR „szisztematikus és rugalmas módszerként határozhato meg, célja az oktatási gyakorlat fejlesztése az ismétlődő elemzések, a tervezés, a fejlesztés és az implementáció segítségével. A kutatók és az oktatók közös munkáján alapul, valós környezetben; és környezetre érzékenyen, design alapelvket és elméleteket eredményez”. Elterően a legtöbb kvantitatív kutatás „realista”, és a legtöbb kvalitatív kutatás „relativista” nézőpontjától, a DBR lételméleti filozófiai hátterének a “pragmatizmust” tartják.

A DBR vizsgálati logikája magában foglalja az indukciót (a mintázatok feltérképezését), a dedukciót (az elméletek és feltevések ellenőrzését) és az abdukciót (a kapott eredmény értelmezéséhez a rendelkezésre álló magyarázatokból megkeresik a legmegfelelőbbet, és azután erre támaszkodnak). Az oktatástechnológia területén a DBR-t gyakran alkalmazzák a gyakorlati oktatási problémák megoldására a technológiai alkalmazások tervezésével és felhasználásával, azzal a céllal, hogy a folyamatok során kiterjessék és finomítsák az elképzeléseket. A DBR folyamatait többnyire interaktivnak, együttműködőnek, ismétlődőnek, rugalmasnak és környezettől függhetnek tartják. A DBR négy fontos fázisból áll: 1) a probléma elemzése, 2) a megoldás kifejlesztése, 3) az ellenőrzés és a tükröletesítés ismétlődő ciklusai, 4) a gyártó/ellenőrző design elméletek reflexiója (Reeves, 2006).

Ugyan a DBR időnként felhasználja a számszerű adatokat és a kvantitatív módszereket az elemzés során, ebben a tanulmányban – három szempont miatt – elsősorban a kvalitatív kutatások közé soroljuk. Először is a DBR a jellege szerint természethű kutatás, természetes közegben történik, és olyan teoriákat használ, melyek a jelenségeket a helyi kontextusban értelmezik. Másodsor, a DBR inkább a tervezési folyamatok narratív adatokkal való dokumentálásával foglalkozik, mintsem a mennyiségileg kifejezhető szerkezetek közötti alkalmi kapcsolatok azonosításával. Harmadsorban a DBR kutatási eredményeit nem általánosítják, mivel a tervezési folyamatot állandóan változtatják, alakítják, reagálva az adott környezet összetettségére. A DBR inkább azzal törődik, hogy az egyes esetek magyarázatához és a tervezők elképzeléseihhez az adatokat biztosítja. Például a design jellemzői, alapelvai működtek-e, vagy sem; az innovációkat hogyan fejlesztették; és milyen fajta változtatások történtek stb. Ezek a
tulajdonságok számos DBR tanulmányban fellelhetőek. A kvantitatív kutatók az esettanulmányhoz hasonlóan a DBR-t is gyakran bírálták amiatt, hogy szerintük nem tudományos kutatási módszer. Ezeket a kritikákat a DBR-kutatók többnyire figyelmen kívül hagyják, mivel a DBR ismeretmeléletileg a pragmatizmusban gyökeredzik. A DBR feltörekvőben lévő kutatási paradigma, és még számos kihívással kell szembenéznie.

2.2.4. A kutatások cél és módszer szerinti osztályozása, tipológiája

Az elmúlt három évizedben az oktatástechnológia kutatói a kvalitatív kutatási módszereket is felhasználták, hogy megvizsgálják és felfedezzék az oktatástechnológia különböző aspektusait. Az érdeklődés fókuszsa áthelyeződött a technológiai integráció hatása iról a tágabb esetekre. Például az oktatási környezet szempontjaira, a tanárok és tanulók interakcióira és nézeteire, az oktatási intézmények politikai és szocio-ökonómiai kapcsolataira, az instrukciós design döntéseire és megállapított magyarázataira. A kvalitatív módszereket (például etnográfia, esettanulmány, design-alapú kutatás) olyan esetekben alkalmazzák (sikerrel, mert számos tanulmány és fontos eredmény születik), amikor az alap kutatás képtelen elérni a szükséges eredményeket. Az oktatástechnológiai szakfórumokon publikált eredmények elemzése alapján, a kutatók által közreadott cikkek osztályozási rendszere, Dick és Dick (1989) szerint:

<table>
<thead>
<tr>
<th>Közleménytípus</th>
<th>A cikk, tanulmány fő jellemzői</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szakirodalmi áttekintés</td>
<td>az irodalom egészének összefoglalása, idónként kritikai szándékkal, idónként pedig, helyzetjelentés</td>
</tr>
<tr>
<td>Módszertani cikk</td>
<td>új modell vagy eljárásmód megfogalmazása egy szakmetodikai kérdéshoz</td>
</tr>
<tr>
<td>Elméleti cikk</td>
<td>elsősorban a kutatási terület elméleti irodalmát használja fel, vagy hozzájárul ahhoz</td>
</tr>
<tr>
<td>Empirikus és kísérleti tanulmány</td>
<td>az értékelő tanulmányok kivételével az összes olyan tanulmány, mely adatok segítségével vonja le a következtetéseket</td>
</tr>
<tr>
<td>Leíró tanulmány</td>
<td>információk közlése adott programról vagy eseményről, kevés adattal, vagy adatok használata nélkül</td>
</tr>
<tr>
<td>Értékelő tanulmány</td>
<td>adatok és információk megjelenítése abból a célból, hogy egy adott program vagy módszer hatékonyságát mutassa be, többnyire alkalmazott környezetben</td>
</tr>
<tr>
<td>Szakmával érintő tanulmányok</td>
<td>az oktatástechnológiaval, mint szakmai foglalkozó tanulmányok jellemzése, pl.: kompetenciák meghatározása, szakmai gyakorlatok leírása</td>
</tr>
</tbody>
</table>

7. ábra: A kutatói cikkek osztályozási rendszere (Dick és Dick, 1989)
Az oktatástechnológia területén a kvalitatív kutatás lazán körülhatárolt, míg más területeken – például a szociológia vagy az antropológia terén – régi hagyományai vannak a kvalitatív kutatásnak, és ott pontos módszernek is számít. A narratív adatokat sok oktatástechnológiai tanulmány széleskörűen alkalmazza; azonban ennek ellenére gyakran azon realista nézet szerint gyűjti és elemzí az adatot, miszerint az igazi tudás létezik és mérhető a tanulók teljesítménye alapján. A technológiai alkalmazásokat „szállítókként” vagy oktatási „intervenciókként” kezelik. Sok kutatás az oktatásban elért „hatékonyságra” összpontosított, és az előt következetésekből általánosítani kívánt a leírás vagy a felfedezés helyett. Jó néhány tanulmányban az adatokat rövid időintervallumban gyűjti összefoglalva (pl.: néhány időpont egy szemeszter alatt); a tanárok és a diákok társadalmi, nemi, osztálybeli és kulturális hovatartozását csak ritkán említték. Az USA-ban az Association for Educational Communications and Technology (AECT) – miután észrevejtette ezeket a problémákat – javasolt egy kritériumrendszt az oktatástechnológia területén végzett kvalitatív kutatás számára, azzal a szándékkal, hogy növelje a pontosságot, a validitást és a társadalmi relevanciát. „Az ismérvek alapján a kutatók célozzák meg a javasolt kutatási problémák gyakorlati értékeit, hogy legyen elméleti értékük és használhatóságuk is. Az ismérvek szerint több figyelmet kell fordítani a kiválasztott módszerek lételméleti és ismeretelméleti feltevéseire, hogy kiküszöbölteljen legyen bármilyen konkuráló ismeretelméleti vagy egyéb feltételezés, ami érvényteleníthetné a kutatás állításait.”

A szisztematikus kvalitatív kutatás jelentősen hozzájárulhat az oktatástechnológia tudományos elfogadottságához és gyakorlatához is. Ez nem jelenti a kvantitatív kutatások mellőzését, hiszen a kutatások tárgyának és céljának megfelelően választják a módszereket. A kutatások célkategóriái, vagyis a kutatási célok rendszere:

<table>
<thead>
<tr>
<th>Célkategória</th>
<th>A kutatás fő jellemzői</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elméleti:</td>
<td>a kutatás a jelenségek magyarázatára összpontosít, segítséggel hívva a logikai elemzést, továbbá a teoriák, alapelvek és más kutatási formák (pl.: empirikus tanulmányok) eredményeinek szintézisét.</td>
</tr>
<tr>
<td>Empirikus:</td>
<td>a kutatás arra fókuszál, hogy meghatározza, az oktatás hogyan működik; ehhez felhasználja a kommunikáció, a tanulás, a teljesítmény és a technológia elméleteihez kapcsolódó következtetéseket.</td>
</tr>
<tr>
<td>Interpretáció</td>
<td>a kutatás azt kívánja ábrázolni, hogy az oktatás hogyan működik; ehhez leírja és értelmezi az emberi kommunikációhoz, tanulásához, teljesítményhez és a technológia használatához kapcsolódó jelenségeket.</td>
</tr>
</tbody>
</table>
Az oktatástechnológiával és –tervezéssel kapcsolatos kutatások tipológiája

Posztmodern: a kutatás azokat a feltevéseket vizsgálja, melyek alapul szolgálnak az emberi kommunikációhoz, a tanuláshoz és a teljesítményhez kapcsolódó technológiai alkalmazásoknak; az a céljuk, hogy felfedjék a rejttetett tanterveket és megerősítsék a jogfosztott kisebbségeket.

Fejlesztési: a kutatás középpontjában az emberi kommunikáció, a tanulás és a teljesítmény növelése érdekében, a technológia és az elmélet felhasználásával kitalált és fejlesztett kreatív megközelítések állnak.

Értékelő: a kutatás egyéni programra, termékre, módszerre összpontosít, többnyire alkalmazott környezetben; célja a vizsgált dolog leírása, fejlesztése, esetleg a hatékonyságnak, az értéknek a felmérése.

8. ábra: A kutatási célkategóriák Reeves szerint

<table>
<thead>
<tr>
<th>Megnevezés</th>
<th>A módszer fő jellemzői</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvantitatív:</td>
<td>kísérleti, kvázi-kísérleti, korrelációs vagy egyéb módszerek, melyek elsősorban a kvantitatív adatokra és elemzésükre épülnek, következtetéseken alapuló statisztikák felhasználásával.</td>
</tr>
<tr>
<td>Kvalitatív:</td>
<td>megfigyelések, esettanulmányok, naplók, interjúk és egyéb módszerek, amelyek magukban foglalják a kvalitatív adatok gyűjtését és elemzését; felhasználva a megalapozott elméletet, és az etnográfiai megközelítéseket.</td>
</tr>
<tr>
<td>Kritikai elmélet:</td>
<td>a szöveg és az azt szállító technológiák dekonstrukciója, azáltal hogy megkeresik a bináris oppozíciókat, a rejttetett tanterveket és a jogfosztott kisebbségeket.</td>
</tr>
<tr>
<td>Szakirodalmi áttekintés:</td>
<td>kutatási szintézisek változatos formái; elsősorban a kutatás egyéb formáinak elemzését és integrációját foglalja magában; pl.: gyakoriság-számlálás, meta-analízis.</td>
</tr>
<tr>
<td>Kevert módszerek:</td>
<td>kutatási megközelítések, melyek több módszert kevernek: többnyire a kvalitatív és a kvantitatív, és az eredményeknél triangulációt alkalmaznak.</td>
</tr>
</tbody>
</table>

9. ábra: Kutatási módszerek osztályozási rendszere Reeves szerint

2.3. ÖSSZEFOGLALÁS

Az oktatástechnológiai kutatások értékes hányada, fejlesztő kutatás, amelynek mindig van eredménye, azonban az audiovizuális technika, a számítógépek és az Internet miatt érzett kezdeti lelkesedéstől és a nagyszámú kutatástól, mely az oktatásban betöltött szerepüket vizsgálta, az elmúlt harminc évben a diákok iskolai teljesítménye csupán kis mértékben fejlődött. Ez nem jelenti azt, hogy sem technológiára, sem kutatásra ne áldozzunk. A mindenkori technológiai fejlesztések eredményei, manapság az új információs és kommunikációs
technológiák és médiumok, különösen a számítógépes hálózati és multimédia telekommunikációs rendszerek (IKT), többnyire nem a pedagógiai szükségletek kielégítése céljából keletkeznek. Az oktatási célú alkalmazások meghatározása, a lehetőségek folyamatos feltárása azonban szükségszerűen megoldandó oktatástechnológiai K+F feladat.

Az oktatástechnológiával és -tervezéssel kapcsolatos kutatások irányát és metodikáját megszabó kulcsfaktorok között fontos az adott elektronikus tanulási környezet, infrastruktúra állapota, a tartalomipar és szolgáltatásrendszere, de három nagy kutatás (OECD 1999-2001.) is megállapította, hogy világszerte nem az infrastruktúra megléte vagy hiánya, hanem sokkal inkább a tanárok szerepvállalása vagy ellenállása határozza meg az oktatási módszertani újítások elterjedését, illetve a tanulási teljesítményeket. Egyértelmű, hogy bizonyos oktatástechnikai invesztálások eredményessége és hatékonysága megkérdőjelezhető, és gondot okoz az erre vonatkozó oktatástechnológiai kutatások eredményeinek hasznosíthatósága is.

Az oktatástechnológiával és –tervezéssel kapcsolatos kutatások tipológiája

elemzés. A különbségek nagy része visszavezethető a kutatók eltérő létemeléleti és ismeretelméleti felfogására.

A kvalitatív nézőpontok és adatgyűjtési módszerek alkalmazásának rége nyúló hagyományai vannak az oktatástechnológia kutatásában, és napjainkban is egyre több figyelmet kap a terület kutatóitól. A valaha elfogadatlanakk ítélt kutatási kérdések és módszerek mára elfogadottakká váltak; olyan tanulmányok jelenhetnek meg, melyek változatos kvalitatív módszereket alkalmaznak, és váltakozó paradigmákon alapulnak. Például az oktatást segítő médiumok használatáról szóló tanulmányokban gyakran szerepel annak leírása, hogy a médiumokat hogyan használják fel a tanórán, erről hogyan vélekednek a tanárok és a diákok. Az interjúkból és a megfigyelésekből is narratív adatokat idéznek. Egyre több esettanulmányban és design-alapú kutatásban jelenik meg a folyamatok, a kontextus, az attitűd, a társas kapcsolatok és a kutatók szubjektivitásának részletes jellemzése. A szakirodalomban túlnyomóan az etnográfia, az esettanulmány és a design-alapú kutatás szerepel. A szisztematikus kvalitatív kutatás jelentősen hozzájárulhat az oktatástechnológia tudományos elfogadottságához és gyakorlatához is. Ez nem jelenti a kvantitatív kutatások mellőzését, hiszen a kutatások tárgyának és céljának megfelelően választják a módszereket.

A kutatások célkategóriái és jellemzői:

<table>
<thead>
<tr>
<th>Célkategória</th>
<th>A kutatás fő jellemzői</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elméleti:</td>
<td>a kutatás a jelenségek magyarázatára összpontosít, segítségül hívva a logikai elemzést, továbbá a teoriák, alapelvek és más kutatási formák (pl.: empirikus tanulmányok) eredményeinek szintezését.</td>
</tr>
<tr>
<td>Empirikus:</td>
<td>a kutatás arra fókuszál, hogy meghatározza, az oktatás hogyan működik; ehhez felhasználja a kommunikáció, a tanulás, a teljesítmény és a technológia elméletihez kapcsolódó következtetéseket.</td>
</tr>
<tr>
<td>Interpretáció:</td>
<td>a kutatás azt kívánja ábrázolni, hogy az oktatás hogyan működik; ehhez leírja és értelmezi az emberi kommunikációhoz, tanuláshoz, teljesítményhez és a technológia használatához kapcsolódó jelenségeket.</td>
</tr>
<tr>
<td>Posztmodern:</td>
<td>a kutatás azokat a feltevéseket vizsgálja, melyek alapul szolgálnak az emberi kommunikációhoz, a tanuláshoz, teljesítményhez és a technológia használatához kapcsolódó jelenségeket.</td>
</tr>
<tr>
<td>Fejlesztési:</td>
<td>a kutatás középpontjában az emberi kommunikáció, a tanulás és a teljesítmény növelése érdekében, a technológia és az elmélet felhasználásával kitalált és fejlesztett kreatív megközelítések állnak.</td>
</tr>
<tr>
<td>Értékelő:</td>
<td>a kutatás egyéni programra, termékre, módszerre összpontosít, többnyire alkalmazott környezetben; célja a vizsgált dolog leírása, fejlesztése, esetleg a hatékonyságnak, az értéknek a felmérése.</td>
</tr>
</tbody>
</table>

Sok kutatás az oktatásban előír „hatékonyságra” összpontosított, és az el-ért következtetésekből általánosítani kívánt a leírás vagy a felfedezés helyett.
Kívánatos, hogy a kutatók célozzák meg a javasolt kutatási problémák gyakorlati értékeit, hogy legyen elméleti értékük és használhatóságuk is.

2.4 ÖNELLENŐRZŐ KÉRDÉSEK

1. Milyen szempontok alapján osztályozhatók és jellemezhetők az OT kutatások?
2. Mi a kvantitatív és a kvalitatív kutatás közötti lényegi különbség?
3. Határozza meg a fejlesztő kutatás lényegét!
4. Ismertesse néhány, az elektronikus tanulási környezethez kapcsolt kutatás lényegét!
5. Melyek az oktatástechnológiai kutatások kvalitatív módszerei és jellemzői?

http://okt.ektf.hu/data/nadasia/file/tananyag/oktataselmelet/1_tananyag5.html

<table>
<thead>
<tr>
<th>A kutatás típusa</th>
<th>Ismeretfeltáró, megismerő</th>
<th>Ismeretképző, kreatív</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primer kutatás</td>
<td>Tényfeltáró</td>
<td>Elmélkedő, töprengő</td>
</tr>
<tr>
<td></td>
<td>inductív, új információt képző</td>
<td>deduktív, ismeretalkotó</td>
</tr>
<tr>
<td>Sekunder kutatás</td>
<td>Meglévő információt gyűjti</td>
<td>Indukáltan gondolatalkotó</td>
</tr>
<tr>
<td></td>
<td>dokumentáló, szakirodalom-kutató</td>
<td>ismeretkövőtő, ismeretvizületizáló</td>
</tr>
</tbody>
</table>

10. ábra: Az általános kutatásmódszertan tárgyának elhatárolása

Tomcsányi Pál: A kutatói és más szellemi munka segítése módszeres kreativitással
Polgári Szemle 2012. FEBRUÁR – 7. ÉVFOLYAM, 5-6. SZÁM
3. AZ OKTATÁSTECHNOLÓGIA
FEJLŐDÉSE, MODELLJEI, TERMINOLOGIAI ÉS ÉRTELMEZÉSI KÉRDÉSEK

3.1 CÉLKITŰZÉS ÉS KOMPETENCIÁK

A fejezet végére a hallgató képes lesz:
1. Az oktatástechnológia fejlődési fázisainak bemutatására;
2. Az oktatástechnikai szemléletet felváltó rendszerszemlélet értelmezésére;
3. Az oktatási rendszerfejlesztési modellek prezentálására (Pl. ADDIE, Clark, et.c.);
4. A modellek tanuláselméleti megalapozottságának kifejtésére;
5. A humán teljesítménytechnológiai modell részletezésére.

3.2 TANANYAG

Egy tudományterület fejlődés-, eszme-, és kultúrtörténetének áttekintése mindig tartogat meglepetéseket, és mindig különleges értékeket és információt nyújt az utókornak. Talán elég, csak Simonyi Károly: A fizika kultúrtörténete\(^1\) című, híres művének egyik gondolatára utalni. „Megérett az idő arra is, hogy a villamos jelenségek alapjául szolgáló kvantitatív törvény szerűségét is megtalálják. Valóban, egy időben több helyen is eljutottak az elektromos vonzás törvényszerűségéhez. A filozófiai háttér mindenki számára ugyanaz volt: Newton nyomán a töltött testek között távolba ható erők törvényszerűségeit keresték."

Az oktatástechnológia története (OT), a pedagógiai technológia, majd az oktatási rendszerfejlesztés, amelyben később az új információs és kommunikációs technológia, az IKT elemei is megjelentek, az 1950-es években kezdődött. A pedagógiai technológiai rendszertervezőknek jelenleg, az oktatástechnológiára épült humán teljesítménytechnológia (HPT – Human Performance Technology) eljárásrendszerével kell megismerkedni. Az OT és a HPT művelői intenzív kutatják, keresik az eredményes tanulási környezet és az optimális humán teljesítmény megteremtésének modelljét. Az OT disziplina legfeljebb 60 évesnek

\(^1\) Simonyi Károly: A fizika kultúrtörténete, 3. kiadás, Gondolat Kiadó, Bp. 1986

3.2.1 A programozott tanítással kezdődött

Az oktatástechnológiának mérföldköve az elágazásos oktatóprogram, és az elektromechanikus Autotutor oktatógép megalkotása. Ez N. A. Crowder, az USA Air Force műszaki kiképző oktatójának találmya, aki 1954-ben eredetileg egy, meghibásodott elektrotechnikai berendezések vizsgálatára szolgáló, hibakereső eljárást automatizált. Az elágazó program olyan algoritmikus tevékenység leírása, amelynek lépéseinek információit, döntési pontokat és döntési feltételeket tartalmaznak. A feltételek teljesülésétől függ a következő információ. Az eredeti Crowder-féle elágazó programban a hibás válaszokat a programozó a tanulás irányítására használta. Az oktatástechnológia kezdete mégis inkább, az Ohio State University pszichológus professzora, S. L. Pressey találmya, az 1920-as években konstruált első vizsgázató gép, amely a későbbiek folyamán oktató-, tanítógéppé fejlődött. Ő a gépről 1926-ban számolt be „Egy tanításra, tesztelésre és a tanulás kutatására szolgáló egyszerű eszköz” c. tanulmányában. Szándé-
Az oktatástechnológia fejlődése...

ka szerint, a gép a tanulói aktivitás ösztönzését szolgálta és lehetőséget adott az intelligencia és a tudás automata tesztelésére.

Az Amerikai Egyesült Államokban a pszichológus Burrhus F. Skinner\(^2\) (1904-1990) a Harward University professzora, Magyarországon pedig, az 1970-es évek taján a didaktikus Kiss Árpád\(^3\) (1907-1979) oktatáskutató tanár és tanaszéke munkásságának\(^3\) köszönhetően és kutatásai eredményeként kialakult ill. honosodni kezdett az oktatástechnológia disziplína. Kialakulását és fejlődését jelentősen meghatározta a tanulás-lélektanilag jól alapozott programozott tanítás, az audiovizuális szemléltetés, a tömegkommunikációs médiumok elterjedése és végül, a számítógéppel segített oktatás. Jelenleg az új információs és kommunikációs technológiák, kiváltéppen az Internet, az interaktív multimédia, és a konstruktív tanulási modell gazdagítja.

Korábban már leírtuk, hogy az oktatástechnológia fogalmával és értelmezésével kapcsolatos kutatásokat és vitákat azonban, minden bizonytalanná mág is befolyásolja egy tanulmány, amelyben A. Lumsdaine\(^4\) két oktatástechnológiát definiált. Ezek egyike a „hardware megközelítés”, másik a „software megközelítés” címkét kapta. Az OKTATÁSTECHNOLOGIA\(^1\) a mérnöki szemlélet és módszerek alkalmazását, az oktatás gépesítését jelenti; célja az oktatás hatékonyságának megnövelése. Mindez azzal járt, hogy speciális taneszközöket kellett kifejleszteni, bevezetni, amelyek az oktatás igényeit is maradéktalanul kielégítik. Ezt gyakran oktatástechnikának is nevezték. Kezdetben ez, az audiovizuális információhordozókra és közvetítőkre korlátozódott. A tervező-készítő tevékenység az elvi és gyakorlati tudnivalóit pedig, az OKTATÁSTECHNOLOGIA\(^2\) foglalja össze. A hatékonyságnövelés ebben a szemléletben nemcsak az eredményesség növelését, hanem a költségek csökkentését is jelentette. Az oktatástechnológia tehát a tudományos és egyéb szervezett ismeretek tudatos felhasználását jelenti az oktatás eredményességének biztosítása érdekében. Nagy jelentőséget tulajdonít az oktatási célok kidolgozottságának, a tananyag tanulóhoz való „illesztettségének”, az értékelés rendszerességének és objektivitásának. E két értelmezés helyett I. K. Davies\(^5\) – aki a hadi, ipari, és szakképzéssel már az 1970-es években intenzíven foglalkozott – egy harmadikat ajánlott, mondóan, hogy a rendszereszméllet e két megközelítést összehozhatja és, természetesen más elemekkel együtt, egy új oktatástechnológia építhető fel, amely „a modern szervezéselmélettel kiegészítve a tanítási és tanulási forrásokat is magában

\(^3\) Kiss, Á.: Programozott tanítás és pedagógiai technológia, OPI, 1976
\(^4\) Lumsdaine, A.: Educational technology, programmed learning and instructional science. Chicago, 1964
foglaló optimális stratégiák alkalmazása a pedagógiai célok elérése érdekében”. A pszichológus J. S. Bruner6 -nek – aki Magyarországon is jól ismert, J. Piaget-vel egyetemben, akinek követője volt – a nézeteire támaszkodva Davies kifejtte, hogy az OKTATÁSTECHNOLÓGIA3, feltehetően elvezet egy új oktatásmélethez, amely jellegét tekintve preszkriptív és normatív lesz7, és amely képessé tesz:

- a tanulási környezet optimális irányítására, amelyenben az előre meghatározott célok elérése a tanulók számára a legjobban biztosítható,
- a tananyag sorrendjének és struktúrájának olyan kialakítására, amely lehetővé teszi, hogy a tanuló a tervezett ismeretek és készségeket könnyen elsajátítsák,
- annak kifejezésére, hogy az egyik oktatási stratégia miért hatékonyabb a másiknál, a tetszőlegesen használható, és a tanulók számára lényeges médiumok megkülönböztetésére és ajánlására.

Nem véletlen, hogy korábban a hazai didaktikai, tantervelméleti, oktatástechnológiai kutatók (Ballér Endre, Báthory Zoltán, Falus Iván, Kádárné Fülöp Judit, Kiss Árpád, Nagy József, Nagy Sándor, Orosz Sándor, és mások), és a mai napig – disziplináktól függetlenül – a szakmódszertani kutatások is gyakran J. Bruner, R. Gagne, és B. Bloom elméleteire hivatkoztak. A 80-as években az Oszágos Oktatástechnikai Központ kutatói is több “oktatástechnológiai rendszert”, tematikus, ill. tantárgyi oktatócsoportot fejlesztettek, főként nyomtattott, és audiovizuális elemekkel. Ekkor a tantervi változásokhoz, a „curriculum development” folyamatához csatolódott az oktatástechnológia, új paradigmát teremtve.

![11. ábra: Paradigmaváltás](image)

6 Bruner, J.S.: Az oktatás folyama. Tankönyviadó, Budapest, 1968. 87 old.

Orosz Sándor\(^8\) 1982-ben elméletileg kimutatta a tantárgyi taxonómiák rá-
épülését a pedagógiai és szaktudományi taxonómiákra. A rendszerszemléletű
tantervefesztés és az oktatástechnológia USA-beli helyezetének elemzése és
“jó gyakorlatok” adaptálási lehetőségeinek konkrét vizsgálata kapcsán magam
is erre jutottam\(^9\).

3.2.2 Az oktatási rendszerfejlesztés, az ADDIE modell
és a követők

A mérhető célok, a B. Bloom és R. Mager-féle céltaxonómiák fontosságát
felismerő oktatási rendszerfejlesztés, az Instructional System Design, legismert-
tebb, ADDIE ősmodelljét a Florida State University-n dolgozták ki, 1975-ben.

12. ábra: Az ötfázisú oktatási rendszerfejlesztés ADDIE modellje (FSU-1975)

Az ADDIE fázisok; az elemzés (Analysis), a tervezés (Design), a fejlesztés
(Development), az alkalmazás (Implementation), és az értékelés (Evaluation).
Minden magyarul kifejtve, a következő műveleteket jelenti:

\(^8\) Orosz, S.: A taxonómiák elméleti problémája. (In: A Szombathelyi Tanárképző Főiskola tudomá-

\(^9\) Nádasi, A.: Oktatástechnológia az Egyesült Államokban (In: Tanulmányok a neveléstudomány
- **Elemzés** – azonosítja a képzés végcélját, a feladatokat és a szükséges lépéseket. Kérdéseket vet fel magáról a teljesítmény természetéről is: Ki teljesít? Milyen feltételekkel és tűréshatárral? Mit kell megtanítani, és mi a már meglévő tudás? Melyik média a legjobb a feladatra?
- **Tervezés** – a képzés tervezetét elkészíteni. Mely oktatási stratégia felel meg jobban az adott tanulócsoporthoz, az adott tananyaghoz? Mivel lehet segíteni a tanulásukat, hogyan lehetünk biztosak abban, hogy a képzés végén, már „élesben” is a legjobbat tudják nyújtani?
- **Fejlesztés** – tematikus tervek, tanmenetek, óravázlatok írása, feladatok, programok készítése a sajátítógéppel segített képzésekhez, handout- ok, videofilmek készítése.
- **Alkalmazás** – képzés/oktatás az óravázlatok szerint, az értékelési feladatok folyamatos végrehajtása, probléma kezelés, támogatás, a kurzus/tantárgy anyagának napra készen tartása stb.
- **Értékelés** – meghatároznai az analízis, a tervezés, a fejlesztés és az alkalmasan validációs értékeit. A képzésen az eredeti szándék valósult meg? A különböző típusú értékelések visszajelzést adnak arról, hogy hol kell változtatni, fejleszteni a képzést.

A klasszikus ADDIE rendszerfejlesztési modell, amelyet 1977-ben, az Indiana University hallgatójaként ismertem meg I. K. Davies, és M. Molenda professzor ura órám és tankönyveiből, jelentős fejlődésen ment keresztül, számos kritikát is kapott, de azért máig az ismert fázisokat alkalmazzuk.

![13. ábra: Az ADDIE modell fejlődésének története](attachment:ADDIE_modell_fejlodoesek_tortenet.png)
Ruth Colvin Clark10 modellje, például módosítja, felülrúja ezt a lineáris ábrázolást, és hangsúlyozza minden egyes lépcsőfok ismétlődő és interaktív jellegét, mely a gyakori ellenőrzéseknek köszönhető. Van Merriënboer11 és társai a tudást illetően, különbséget tesznek az ismeretek és a készségek között, s a 4C/ID modelljükben nem csupán az elvárt ismeretekre, hanem a tevékenységkre, készségekre fókuszálnak, valamint alkalmazzák a számítógépes tervezést és a kompetencia-alapú megközelítést.

14. ábra: Clarc ISD modellje 15. ábra: Van Merriënboer 4C/ID oktatásfejlesztési modellje

Ehhez kapcsolódóan mutatjuk be a magyar közoktatás egyik lehetséges, oktatásfejlesztési és tartalomszolgáltatási rendszer-modelljét12, amelynek elemei, műveletei és kapcsolatai az oktatástervezéshez, a tanterv-, és a pedagógiai rendszerfejlesztéshez, valamint a tanulásirányításhoz egyaránt támpontot adnak.

12 Nádasi, A.: Oktatásielmélet és technológia (elektronikus jegyzet) EKF, 2010 http://okt.ektf.hu/data/nadasia/file/tananyag/oktataselmelet/1_tananyag1.html

14 *Tompá, K.* : Az oktatócsomagok tervezésének és alkalmazásának didaktikai kérdései. (Bölcsész-doktori diszertáció) ELTE, 1980. A dolgozat a „Főnevek világa” és „Ponthalamzok” c. oktatócsomagok fejlesztési és kiröbádási tapasztalatait is tárgyalja.

töltött szerepe is. Az értékelés fő feladata egy-egy pedagógiai szakasz elején a tervezés, a szakasz közben az adaptáció, a szakasz végén pedig, az innováció segítése – a harmadik feladat sikeres ellátása a kimenetszabályozás legfontosabb feltétele. Az értékeléssel szemben tehát a legáltalánosabb elvárás az, hogy adjon pontos információt a tanulók tudásáról, képességeiről, a pedagógus szakmai munkája szempontjából azonban igen lényeges az is, hogy az értékelés nyújtson hatékony segítséget a tanítás és a fejlesztés tervezéséhez.

Mindegyik oktatástechnológiai modell egy-egy tanuláselméletre épített. A behaviourizmus szerint a tanulás nem más, mint a viselkedés kondicionálásos módosítása a megfelelő külső ingerek hatására. (L. a programozott oktatás) Az asszociációs modulú tanulás a tanulási elváltozás és változás a megfelelő külső ingerek hatására. Az értékeléssel szemben tehát a legáltalánosabb elvárás az, hogy adjon pontos információt a tanulók tudásáról, képességeiről, a pedagógus szakmai munkája szempontjából azonban igen lényeges az is, hogy az értékelés nyújtson hatékony segítséget a tanítás és a fejlesztés tervezéséhez.

Mindegyik modell egyaránt hasznos segítséget adhat tanulási környezetek szervezésénél, az oktatástechnológiai modellek értékelésénél, mivel nem egy-mást kizáró, hanem inkább komplementer viszonyban vannak.
Természetesen újabb elméletek és modellek is születtek, pl. a konnek-
tivizmus, vagy a trialogikus tanulás16, amely a tanulást, mint tudásalkotást alap-
pul vevő olyan elméleteket foglal magában, mint az innovatív tudásközösségek
modelljei, az expanzív tanulás és a tevékenységelmélet.

A R. Gagne elveire épülő AECT modell17 az oktatástechnológiai ismeretek
és készségek 5 csoportját ábrázolja, melyek az oktatástechnológia elméleti és
gyakorlati alapját képezik. Ezek a területek és részterületek alkotják az oktatás-
technológiát tanító tanárok, és a professzionális oktatásfejlesztők számára el-
engedhetetlen ismereteket, kompetenciákat is.

17. ábra: Az AECT oktatástechnológia modellje – 2000

16 Hakkarainen, K. & Paavola, S. Toward a trialogical approach to learning. In B. Schwarz, T.
Dreyfus, & R. Hershkowitz (Eds.) Transformation of knowledge through classroom interaction

17 Earle, R. (Ed.). Standards for the accreditation of programs in educational communications and
technology. Bloomington, IN: Association for Educational Communication and Technology.
2000.

3.2.3 A Human Performance Technology

A **Human Performance Technology** (HPT) lényegében az OKTATÁSTECHNOLÓGIA, szisztematikus eljárás az optimális humán teljesítmény eléréséhez. A hiányosságok feltárására, az egyén és közösség számára egyaránt értékes, eredményes, a hagyományos és az IKT megoldásokra egyaránt koncentrál. Az **International Society for Performance Improvement (ISPI)** honlapján olvashatjuk:

„A HPT gyökerei az oktatási rendszerből, a humán erőforrás területéről, a környezeti és humán tényezők gazdaságos megszervezésének elméletében, és a szervezettfejlesztésben erednek. Az egyén teljesítménye az, és a HPT erről szól, amellyel egy szervezet eléri a céljait. A rendszerfejlesztés az oktatási rendszerbe a második világháborús katonai képzés nyomán került bele. Az ötvenes évekre kialakultak az oktatási célok taxonómiai; a hatvanas években a programozott oktatás és a kognitív pszichológia váltak meghatározó elemekké. A 60-as évek vége felé az oktatástechnológiát felhasználó teljesítménnyel kapcsolatos képzést alkalmazták. 1970-ben Joe Harless kitalálta a Front-End analízist: szerinte azok az projektek, amelyekben dolgozik, sokkal sikeresebbek lennénak, ha az elején végeznék az analíziseket, nem a végén. Vagyis a képzést kell fejleszteni, nem pedig a teljesítmény problémáit megoldani. A hetvenes évek vége felé Thomas Gilbert új módokat javasolt a megfelelő vagy kiváló teljesítmény megtervezéséhez. A 80-as években a teljesítményen volt a hangsúly, a kilencvenes években az üzleti élet is felfedezte a teljesítménytechnológia értékét – az analízis során javasolt beavatkozások érintették a termelés mennyiségét, ami fontos az üzleti életben. Annak az érthető, hogy sikertől megoldani a problémát, túlszárnyalta a beavatkozás költségét, még a képzés díját is.”

Az ISPI modell tehát, deklarálta az oktatástechnológiai rendszerszemléletre, az oktatási rendszerfejlesztés ADDIE modelljére, és főként R. Gagne és T. Gilbert munkáira épül. A modell kiinduló pontja, hogy a teljesítmény elégtelen-ségének több oka lehet, pl. ha a következők bármelyike hiányzik egy működő rendszerből:

- konzekvencia-felismerés, ösztönzés, jutalmazás;
- adat, információ és visszacsatolás;
- támogató környezet, erőforrások, eszközök;
- egyéni teljesítképesség;
- motiváció és elvárások;
- tudás és képesség.

Ha ezeket az okokat azonosították, akkor meg lehet tervezni a megfelelő beavatkozást a probléma megoldására. Például ha a problémát a tudás vagy a szakképzettség hiánya okozza, akkor a megfelelő oktatással/képzéssel meg-szűntethető. A megfelelő ember kiválasztásával az egyéni teljesítőképesség (fizikai erő, intelligencia) problémája is megoldható. A HPT szakembereket bevonhatják a beavatkozás tervezési folyamatába, akár képzésről van szó, akár nem. Például a megfelelő személy kiválasztásakor szükség lehet az elvégzendő munka/feladat elemzésére. Egy ilyen analízis megmutathatja, milyen tulajdon-ságok kellenek a munka sikeres elvégzéséhez. A beavatkozás egy másik példája, amikor visszacsatolási rendszert terveznek meg, hogy a feladatban érdekeltek tudják mi az elvárás, és hogy teljesítik-e azt. Néha a megfelelő vezetés, máskor a jó technológiai rendszer jelenti a megoldást.

Az elemzések sorában nagy jelentőségű a feladatanalizis, vagy munkaelemzés (Job Analysis vagy Job Task Analysis). Egy adott munka elvégzéséhez szükséges feladatok tulajdonságainak az azonosítását jelenti, amelyből meg tudhatjuk, hogy képzésre van-e szükség, vagy másfajta teljesítménytámogatás segítené a teljesítmény növekedését. Amikor a képzés bizonyul a megfelelő beavatkozásnak, akkor a HPT szakemberek aprólékos gondolattal dolgoznak ki a képzés rendszerét, hogy annak hatékonyságát és eredményességét biztosítani tudják. Ekkor a már bemutatott ISD – ADDIE oktatástechnológiai modellek szerint járnak el. Az eredmények alapján az oktatásfejlesztők, bevált algoritmusok segítségével, kiválasztják a képzéshez szükséges feladatokat és módszereket.

18. ábra: Példa a hierarchikus feladatelemzésre (creating reading Web site)

http://classweb.gmu.edu/ndabbagh/Resources/IDKB/resources_exploration.htm
Az oktatástechnológia fejlődése...

Gyakran szükség lehet pl. a teljesítménytámogatás egyik fajtájára, a **job aid**-re. Ez segítséget jelent a feladatvégzőknek, nem fejből kell az adott feladat lépésein végrehajtani. Ez állhat egy egyszerű ellenőrzési listából (checklist), vagy lehet egy komplex algoritmus. Elektronikus formáját **elektronikus teljesítménytámogató rendszernek** (electronic performance support system, EPSS) nevezük, amely szerte a világon, és a hazai tanárképzés gyakorlatában is bevált\(^\text{19}\).

\[\text{19. ábra: http://kidtools.org/Publications.php}\]

Ami az oktatási, oktatástechnológiai megoldásokat illeti, a hagyományos előadás-magyarázat, demonstráció, vita, szerepjáték, esettel tanulmány, szimuláció, „hands on exercises” módszerek és oktatási formációk mellett, egyre több HPT szakember fordul az újonnan megjelenő oktatási forma, az „alternatív” fejlesztés felé. Ezek a technológiai és oktatástechnológiai fejlesztések, multi-média és, más IKT előnyökére épülnek. Általánosságban elmondható, hogy ezeknek a módszereknek a fejlesztése sokba kerül, de nincs szükség bonyolult infrastruktúrára, így viszonylag hamar megtérül. A leggyakoribb IKT keretek:

- Számítógépes „e-learning”, Interactive Courseware;
- Interactive Video Teletraining;
- Web alapú szolgáltatások, interaktív képzés a weben;
- Intranet (a saját szervezet belső hálózata);
- Extranet, két vagy több szervezet saját közös hálózata;
- Szimulátorok;
- Oktatócsmagok videóra;
- Beágyazott teljesítmény-támogatás – embedded performance support.
Talán egyértelmű az oktatástechnológiai, oktatási rendszerfejlesztési, és humán teljesítménytechnológiai modellek konvergenciája, amelyet a következő idő-ábrán is követhetünk:

21. ábra: A HPT gyökerei http://debwagner.info/hpttoolkit/timeline_hpt.htm

22. ábra:
Az oktatástechnológia fejlődése

A HPT legismertebb képviselőinek jelentős része az oktatástechnológia (Educational Technology) szakembere, professzora. Az ISPI adatai szerint, az "Educational Technology", az "Instructional Systems Development", és a "Human Performance Technology" szakértői, akik a hídat megépítették:

<table>
<thead>
<tr>
<th>Neve</th>
<th>Témája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tom Gilbert</td>
<td>(father of HPT, "Human Competence: Engineering Worthy Performance")</td>
</tr>
<tr>
<td>Joe Harless</td>
<td>(coined term, Front-end Analysis, originator of FEA workshops, Job Aid workshops, recently retired. Past-president of ISPI and elected to HRD Hall of Fame. Workshop materials now owned by HPT Inc., Dr. Paul Elliott)</td>
</tr>
<tr>
<td>Robert Mager</td>
<td>(known for “3 part objectives”, “What every manager should know about training” and the “Mager six-pack” (set of paperbacks on training))</td>
</tr>
<tr>
<td>Allison Rossett</td>
<td>(San Diego State, "Training Needs Assessment")</td>
</tr>
<tr>
<td>Geary Rummler</td>
<td>(“Improving Performance How to manage the white space on the organizational chart,” and “HPT systems”)</td>
</tr>
<tr>
<td>Dean Spitler</td>
<td>(principal of Boise State Performance & Instructional Technology Master’s Program, delivered via the internet, “Super Motivation”)</td>
</tr>
<tr>
<td>Roger Kaufman</td>
<td>(Florida State, "Needs Assessment: Concept and Application")</td>
</tr>
<tr>
<td>Robert Gagne</td>
<td>(Florida State, now retired, wrote, "Conditions of Learning", "Gagne’s Nine Instructional Events")</td>
</tr>
<tr>
<td>David Jonassen</td>
<td>(Penn State, wrote, "Handbook of Task Analysis")</td>
</tr>
<tr>
<td>Peter Dean</td>
<td>(Senior Fellow, Wharton School, professor at University of Tennessee, Editor of the Performance Improvement Quarterly and member of the Human Performance Technology Institute Faculty, author of “Performance Engineering at Work”)</td>
</tr>
<tr>
<td>Gloria Geary</td>
<td>(author of books on CBT and Electronic Performance Support Systems)</td>
</tr>
<tr>
<td>Jack Phillips</td>
<td>(author of best selling ASTD book, "Measuring the Effectiveness of Training")</td>
</tr>
<tr>
<td>Frank Dwyer</td>
<td>(Penn State, past-president of AECT, author of "Visualized Instruction")</td>
</tr>
<tr>
<td>David Merrill</td>
<td>(Utah State, known for "Component Display Theory" and "ID2")</td>
</tr>
<tr>
<td>Charlie Reigeluth</td>
<td>(Indiana Univ., editor of "Theories of Instructional Design" and known for "Elaboration Theory of Instruction")</td>
</tr>
<tr>
<td>Stolovich & Keeps</td>
<td>(editors of "Handbook of Human Performance Technology")</td>
</tr>
<tr>
<td>Marc Rosenberg</td>
<td>(AT&T, "Performance Technology: Working the system")</td>
</tr>
<tr>
<td>Ruth Colvin Clark</td>
<td>(principal of Center for Performance Technology)</td>
</tr>
<tr>
<td>John Keller</td>
<td>(Florida State, known for Motivation Theory in Instructional Design)</td>
</tr>
<tr>
<td>Robinson, D. C., & Robinson, J. C.</td>
<td>("Training for impact" and "Performance Consulting")</td>
</tr>
</tbody>
</table>

3.3 ÖSSZFEFOGLALÁS

Az Amerikai Egyesült Államokban a pszichológus Burrhus F. Skinner (1904-1990) a Harvard University professzora, Magyarországon pedig, az 1970-es évek táján a didaktikus Kiss Árpád (1907-1979) oktatáskutató tanárszéke munkásságának köszönhetően és kutatásai eredményeként kialakult ill. hosszú idejű kezdet az oktatástechnológia disziplína. Kialakulását és fejlődését jelentős mértékben meghatározta a tanulás-lelektanilag jól alapozott programozott tanítás, az audiovizuális szemlélet, a tömegkommunikációs médiumok elterjedése és végül, a számítógéppel segített oktatás. Jelenleg az új információs és kommunikációs technológiák, kiválóképpen a Internet, az interaktív multimédia, és a konstruktív tanulási modell gazdagítja. Az oktatástechnológia fogalmával és értelmezésével kapcsolatos kutatásokat és vitákat míg is befolyásolja egy tanuló, amelyben A. Lumsdaine két oktatástechnológiai definíciót. Ezek egyike
a „hardware megközelítés”, másik a „software megközelítés” címkét kapta. Az OKTATÁSTECHNOLÓGIA\(^1\) a mérnöki szemlélet és módszerek alkalmazását, az oktatás gépességét jelenti; célja az oktatás hatékonyságának megnövelése. Mindez azzal járt, hogy speciális taneszközöket kellett kifejleszteni, amelyek az oktatás igényeit maradéktalanul kielégítik. Ennek a tevékenységnek az elvi és gyakorlati tudnivalóit pedig, az OKTATÁSTECHNOLÓGIA\(^2\) foglalja össze. A hatékonyságnövelés ebben a szemléletben nemcsak a az eredményesség növelését, hanem a költségek csökkentését is jelentette. Az oktatástechnológia\(^2\) tehát a tudományos és egyéb szervezett ismeretekkel felhasználását jelenti az oktatás eredményességének biztosítása érdekében. Nagy jelentőségét tulajdonít az oktatási célok kidolgozottágának, a tananyag tanulóhoz való „illesztettségének”, az értékelés rendszerességének és objektivitásának. E két értelmezés helyett I. K. Davies – aki a hadi, ipari, és szakképzés megközelítése már az 1970-es években intenzíven foglalkozott – egy harmadikat ajánlott, mondva, hogy a rendszeresművelet e két megközelítést összehozhatja és, természetesen más elemekkel együtt, egy új OKTATÁSTECHNOLÓGIA\(^3\) építhető fel, amely „a modern szervezéselmélettel kiegészítve a tanítási és tanulási forrásokat is magában foglaló optimális stratégiai alkalmazása a pedagógiai célok elérése érdekében”. A R. Gagne-féle Instructional Design & Development az OKTATÁSTECHNOLÓGIA\(^4\)-nek tekintethető. Lényegében ez a curriculum-fejlesztés modellje, tanulási esemény, folyamat-tervezés, amelyhez multimédia oktatócsomag, pedagógiai program, vagy rendszer társul.

3.4 ÖNELLENŐRZŐ KÉRDÉSEK

1. Melyek az oktatástechnológia fejlődési fázisainak meghatározói?
2. A rendszerszemlélet értelmezése, az oktatási rendszerelemek
3. Az ADDIE oktatási rendszerfejlesztési modell
4. Az AECT, a Clark-féle, és Gagne-Briggs modell egybevetése
5. Milyen a modellek tanulásméleti megalapozottsága, melyek a fő tanulásméletek?
6. A humán teljesítménytechnológiai modell részletezése
4. AZ AUDIOVIZUÁLIS OKTATÁSSAL ÉS A PROGRAMOZOTT TANULÁSSAL KAPCSOLATOS ALAPKUTATÁSOK

4.1 CÉLKITŰZÉS ÉS KOMPETENCIÁK

A fejezet végére a hallgató képes lesz:

1. Az oktatástechnológia fő fejlődési fázisainak bemutatására;
2. Az audiovizuális oktatással kapcsolatos kutatások főbb eredményeinek prezentálására;
3. A programozott tanulással kapcsolatos vizsgálatok értékelésére;
4. A multimédia oktatóprogramok és az elektronikus tanulás alapjainak értelmezésére;
5. A használható kutatási módszerek és eredmények interpretálására

4.2 TANANYAG

Az oktatástechnológia története rövid és érdekes, ezért – hogy megérthesük a helyzetét a napjainkban – mindenképpen be kell számolni arról, hogy a különböző szakmák és gondolkozási minták összessége hogyan hozta létre az oktatástechnológia tudományterületét. A fogalmi szerkezetek, melyek valójában a hatvanas-hetvenes évek során alakultak ki, azóta jelentős változtatáson estek át, de jó alapokat biztosítanak ma is. Minderről meggyőződhetünk, ha áttekintjük, hogy mit tanítanak oktatástechnológiaként a hetvenes-nyolcvanas-kilencvenes években, ill. az ezredforduló után. A klasszikus kísérleti és szemléletű eszközök, közütk a nagyhagyományú diavetítés és filmoktatás mellett, ebben az időszakban kaptak jelentős szerepet az oktatásban a tömegkommunikációs eszközök, vagyis a rádió és a televízió. Világszerte, így némi késéssel Magyarországon is, a ma népszerű médiapedagógiaiát megalapozó tévépedagógia,

szinte önálló didaktikai-oktatástechnológiai területté vált. Számos iskolatelevíziós sorozat létezett, szakfolyóiratok, módszertani kiadványok készültek, több kutatás, hatásvizsgálat indult.

A hatvanas években, a filmes és tévés világából, és természetesen a tanesz-köz szektorból, az oktatástechnológia területére többnyire még két irányból érkeztek: az audiovizuális oktatás és a programozott tanulás felől. Mindegyikhez számos lehetséges fogalmi szerkezet társult, melyeket a szakemberek a munkájuk természete, az aktuális tantárgyak metodikája, vagy egyéni preferenciájuk szerint adaptáltak. A programozott tanulás a kezdeti szakaszban elmélet-vezéreltnek tekinthető, mivel jelentős tanuláslélektáncat tudhatott magának, de az audiovizuális oktatás esetében nehéz volt kialakítani bármilyen elméleti alapot a gyakorlat támogatására. Az audiovizuális oktatással foglalkozó szakemberek könnyen összekapcsolhatták szaktudásukat az osztályokban tanító tanárokat felhalmozott szakmai tapasztalataival, a képi szemléletetés több évszázados gyakorlatával. Az audiovizuális módszer, pl. a nyelvoktatásban hamar általánossá vált. Ezzel szemben a programozott oktatással foglalkozó specialis-ták gyakran vádolták közönnyel a tanárokat, és ez jócskán hátráltatta az együttműködést.

Az is tény, és sok forrás azt erősíti, hogy a mindenkori technológiai fejlesztések eredményei többnyire nem a pedagógiai szükségek kielégítése céljából keletkeznek. „Az ötvenes évektől az oktatástechnológia egyik legfőbb sajátossága a technológiai innovációk rendszeres ösztönzése. Minden újonnan feltűnő médium esetében feltámadt a remény is, hogy az oktatás területén is hasonló eredményeket fog elérni, mint a szórakozásban, a kommunikációban, vagy a társadalom az információkezelésben. Ezen reményeket, az ipar is bátorította abban bízva, hogy az iskolák számára is eladható lesz az új médium. Azonban a szoftverfejlesztésbe és a képzésbe való befektetések ritkán bizonyultak elégségesnek az új médiumban rejlő lehetőségek felismeréséhez, és ez kevés volt ah-

höz, hogy egy újabb terhet helyezzenek az egyébként is nyomás alatt lévő oktatási költségvetésre. Azokban a gazdagabb országokban, régiókban fokozatosan felhalmozódta az erőforrások, melyek eléggé szerencsések voltak ahhoz, hogy részt veessenek a pilot projektekben, de a koherens, hosszú távú stratégia hiányzik.”

Az oktatási célú alkalmazások meghatározása, egyáltalán, a taneszközök jellemzőinek leírása, a médiumok kategorizálása, a lehetőségek folyamatos feltárása, az eredményesség elméleti és kísérleti bizonyítása azonban, szükségszerűen megoldandó kutatási feladattá vált. Egyértelművé vált, hogy az oktatástechológiai alap Kutatásoknak a médiumok és médiakombinációk hatékonyságának és az eredményes tanulást biztosító médiájellemzőknek a kimutatására, az optimális tanulási feltételek (környezet és módszerek) meghatározására kell irányulnia. Napjainkra a fejlesztő kutatásoknak a célja a konkrét tantervi célok elérését, tartalmak és kompetenciák elsajátítását bizonyíthatóan segítő programcsomagok, ill. új információközlő és készségfejlesztő tananyagok, pedagógiai rendszerek kifejlesztése és implementálása.

4.2.1 A taneszközök és az audiovizuális eszközök generációi

A nemzetközi szakirodalomban, az oktatástechológiai val kapcsolatban Dale tapasztalati piramisához hasonló gyakorisággal említik W. Schramm 4 oktatástéma-taneszköz nemzedékét. 1962-ben az UNESCO összehívta tagországaik azon delegáltjait, akik az új oktatási módszerek és eszközök felhasználásának és alkalmazásának szakértői, vagy felelősei. A tanácskozás célja az volt, hogy áttekintsék, elemezzék és összegezzék az új oktatási módszerek és médiumok alkalmazásának oktatáselméleti megalapozottságát, a hatékonyságukkal kapcsolatos kutatások eredményeit, az előbbre járó nemzetek gyakorlati tapasztalatait, és ezek birtokában ajánlást tegyenek a tagosztályok oktatási kormányzatainak. A Párizsban rendezett szakértői értekezlet nyitó előadását Wilbur Lang Schramm (1907–1987) professzor, a Stanford Egyetem Kommunikáció-kutatási Intézetének igazgatója tartotta, The newer educational media in the United States (Az újabb taneszközök az Egyesült Államokban) címmel. Előadásában a tanítási eszközök (educational media) négy generációját azonosította, illetve különböztette meg, s ezt az osztályozást, azóta is gyakran idézik, többnyire pontatlanul. Wilbur Schramm az oktatási média, magyarul taneszköz generációkat

http://okt.ektf.hu/data/nadasia/file/tananyag/oktatasmellet/1_tananyag5.html
1962-ben így jellemezte: „Az 1. nemzedékbe tartozó taneszközök voltak a gépek előtti eszközök; a 2. generáció vezette be a kommunikációs folyamatba az írás és a rajz sokszorosítására alkalmas gépeket; A 3. nemzedék a folyamatba integrálta a szem és a fül hatósugarát kiterjesztő gépeket. A 4. nemzedékbe sorolt oktató médiumokat, amelyeknek használata végül kezdődik, az ember és a gép közötti kommunikáció megvalósítására való alkalmassága különözteti meg a többitől.” Az ábrán az eredeti dokumentum látható.

23. ábra: A taneszközök 4 generációja (Schramm, 1962)

Az egyes generációkba sorol médiumokat érzékelési csatornák, a szöveg-kép dominancia, vezérelhetőség, oktatásszervezeti forma, az iskolai használat kezdete és gyakorisága szerint jellemzi. A médiumok közötti munkamegosztás, a multimédia koncepció, és rendszerszemlélet, már a számítógépek elterjedése előtt új perspektívát kínált 24. Szűcs Példában kiegészítette Schramm rend-

szerét az ötödik nemzedékekre. A taneszközök sorába az akkor legmodernebb eszközök kerültek be: a videó-rendszerek, a személyi számítógépek, és az igéretes multimédia programok. Az ebben a nemzedékbe tartozó taneszközök – a programozott tanítási modell magasabb szintjén – interaktív kapcsolatot tesznek lehetővé a programokkal, a számítógéppel.

A gyorsulást és a média konvergencia jelenséget jól érzékelteti Tompa Klára 1997-ben készült tanulmánya. „Talán a nem is túl távoli jövőben paradigmaváltás várható, új taneszköz-értelmezés és új gazdaságossági modell megjelenése van kilátásban az elektronikus hálózatok széles körű bevezetése kapcsán. Minden eddigi médium, taneszköz esetén úgyanis előbb történt az előállítás, a materializálás és azután a szétküldés, a terjesztés. A könyveket ki kellett nyomtatni, a videofelvételt kazettára kellett sokszorosítani, a CD-ROM pedig optikai lemezen rögzített információkat jelent. A hálózati információk esetén azonban fordított a helyzet. Igaz, az információk különböző formáit rá kell vinni a hálózatra, de ezzel együtt a terjesztés már meg is oldott az anyagok materializálása nélkül. A tényleges tartalmakat csak az nyomtatja ki, csak az tölti le más információhordozóba, akinek olyan formában is kell. Ez a tény a szükséges költségek megjelenését óhatatlanul átcsoportosíthatja, s így várhatóan egy teljesen újszerű taneszköz-előállítási és finanszírozási modell fog kialakulni.” A taneszközök rendszerező táblázata az 1997-ben megjelent Pedagógiai Lexikon szerint:

<table>
<thead>
<tr>
<th>HÁROMDIMENZIÓS</th>
<th>NYOMTATOTT</th>
<th>OKTÁTÁSTECHNIKAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrációs eszközök</td>
<td>Tanári segédletek</td>
<td>Anyagok, oktató média</td>
</tr>
<tr>
<td>természeti tárgyak, gyűjtemények, preparátumok, munkatermékek, kísérleti eszközök, utánzatok, applikációs eszközök, taktílis taneszközök, mérőeszközök, mestszetek, földgömbszöveget</td>
<td>tanári kézikönyvek, módszertani segédkönyvek, szakkönyvek, feladatgyűjtemények, folyóiratok, tantárgyteszteket, bibliográfiaik, műsorjegyzékeket, táblaszöveget és vázlatok, falíkenyek, falitérképek</td>
<td>információhordozók, audiovizuális anyagok, szoftver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>audiovizuális eszközök, segéd-eszközök, hardver</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lemezjátszó, magnetofoon, rádiókészülék, CD lejátszó, CD-I lejátszó</td>
</tr>
</tbody>
</table>

26 Tompa Klára: Taneszköz-jegyzék a Nemzeti alapanterv tükrében. Új Pedagógiai Szemle 1997 november
24. ábra: A taneszközök rendszere (Tompa, 1997)

1998-ban Petriné 28 már az Internetet is egyértelműen besorolja az V. generációba, bár azóta, a digitalizált és a digitális taneszközök további nemzedékei is megjelentek. A következő osztályozás, kísérleti taxonómia, a hagyományos tankönyveket nem, és az újabb elektronikus tankönyv formátumokat 29, csak részben tartalmazza.

HÁROMDIMENZIÓS

<table>
<thead>
<tr>
<th>Tanulókisérleti és munkaeszközök</th>
<th>Tanulói segédeletek</th>
<th>Vizuális</th>
</tr>
</thead>
<tbody>
<tr>
<td>manipulációs eszközök, kísérleti eszközök, logikai készletek, laboratóriumi készletek, modellek, applikációs eszközök, mérőeszközök, tanulói földgomb, szerszámok, hangszerek, sportszerek</td>
<td>tankönyvek, munkafüzetek, munkalapok, feladat-lapok, nyomtatott programok, atlaszok, szótárak, szöveggyűjtemények, olvasókönyvek, növény- és állathatározók, feladatgyűjtemények, kötelezőirodalom, folyóiratok, dolgozat-füzetek, mérő- és számolóeszközök</td>
<td>átlátszatlan képek, állóképvetítők, diapath, keretezettdiapisköp, epidiaszkóp, diavetítő, dianéző, irásvetítő</td>
</tr>
</tbody>
</table>

NYOMTATOTT

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Audiovizuális</th>
</tr>
</thead>
<tbody>
<tr>
<td>hangozott diasorozat, hangsfilmek, (iskola)televízióadás, videofilmez, képlemezek, képművek, oktatóprogramok, oktatócsomagok, TV-készülék és CD-televízióadás, videofilmek, képlemezek, képmagnetofon, képművek, óramű, televízió, nyelvi labor, oktatógép</td>
<td>mozgóképvetítők, hangozott viasorozat, hangsfilmek, (iskola)televízióadás, videofilmez, képművek, képmagnetofon, képművek, óramű, televízió, nyelvi labor, oktatógép</td>
<td></td>
</tr>
</tbody>
</table>

OTKATÁSTECHNIKAI

<table>
<thead>
<tr>
<th>Számítógépes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>számítógépregisztráló eszközök, oktatóprogramok, multimédia programok</td>
<td>számítógépregisztráló eszközök, oktatóprogramok, multimédia programok</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Szemléletető, demonstrációs eszköz</th>
<th>Tanulóki- sérleti és munkaeszköz</th>
<th>Vizuális szemléletető eszköz</th>
<th>Tömegmédia, audiovizuális taneszköz</th>
<th>Komplex oktató-program, oktatócso- mag</th>
<th>Számítógépi program, multimédia</th>
<th>Digitális on-line taneszköz rendszer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Földgömb, éggömb</td>
<td>Applikációs táblai készlet</td>
<td>Falitér-kép, dombortérkép</td>
<td>Tudományos és oktató-film</td>
<td>Tanulói programcsomag</td>
<td>Oktató, gyakorló, testsz program</td>
<td>Digitális könyvtár</td>
</tr>
<tr>
<td>Tanári kísérleti eszköz</td>
<td>Didaktikus játék</td>
<td>Falikép, poszer, tabló</td>
<td>ITV, IR, interpretáció</td>
<td>Nyelvi laborprogramok</td>
<td>CAI, CAL, CMI, CBT, TBT</td>
<td>Multimédia forrásközöpont</td>
</tr>
<tr>
<td>3D modell, ma-kett, metszet</td>
<td>Kísérleti eszköz, modell</td>
<td>Diasorozat, diafilm</td>
<td>Hanglemez Hangkazetta</td>
<td>Multimédia oktatócsmag</td>
<td>Audio CD, oktató DVD</td>
<td>Digitális tudásbázis</td>
</tr>
<tr>
<td>Mérőeszköz, műszer</td>
<td>Laboratórium készlet</td>
<td>Írásvetítő fólia, modell</td>
<td>Hangosított diasorozat</td>
<td>Pedagógiai programcsomag</td>
<td>Multimédia oktató CD, DVD, flipbook</td>
<td>E és M-learning rendszer</td>
</tr>
<tr>
<td>Növény, állatpreparatúm</td>
<td>Logikai fejlesztő készlet</td>
<td>Nyomtatott képsorozat</td>
<td>Diaporáma, multivízió</td>
<td>Integrált média rendszer</td>
<td>Fotó CD, ppt, képgyűjtemény</td>
<td>Virtuális laboratórium</td>
</tr>
<tr>
<td>Mintaközéttőzönyétyár</td>
<td>Manipulációs készlet</td>
<td>Dinamikus optikai ábra</td>
<td>Oktatógépi program</td>
<td>Szimulációs program, VR</td>
<td>Virtuális múzeum</td>
<td></td>
</tr>
</tbody>
</table>

25. ábra: A taneszközök osztályozása (Nádasi, 2010)

Jól látható, hogy a korábban használt, bevált audiovizuális taneszközök egy részét valóban kiváltotta, és kiválthatja a számítógép, és számos, minőségileg új taneszköz is született. Kér dés azért, hogy pl. a diavetítés, és a projektorral végzett prezentáció, a fázisképek ből felépülő írásvetítő transzpárens és az animáció, a filmvetítés, illetve a digitális videó lejátszás, az interaktív táblán megjelenő, tetszőlegesen szabályozható dinamikus szemléletet küzzött van-e, és mi a lényeges, minőségi különbség. És leginkább: szükségét és értelmét látjuk-e még az iskolában a direkt szemléletet, a magyarázatnak, az interpretációknak, a valóságos tanári demonstrációnak, a tanulók által végzett kísérleteknek, méretseknek, elemi fizikai műveletek végzésének – akár számítógéppel megszegve, vagy csak úgy, egyszerűen. Ha nem, a való világtól távolítjuk el az új generáci-
úton, amelynek a természettudományos és műszaki pályák iránti közömbössége az ezredforduló óta érzékelhető.

Pár évtized alatt az audiovizuális technika, a szemléltetés módszerei és eszközei megváltoztatták a gyakorlatot, valamiféle elméletei is kialakult. Az elmúlt fél évszázad során az oktatástechnológia, és az oktatás technológiája, jelentős változásokon ment keresztül. Kezdetben, a legtöbb audiovizuális szakember egyszerűen szaktanácsadónak tartotta magát; tanácsot adtak a tanároknak, továbbképzéseket szerveztek, oktatási forrásanyagokat biztosítottak a tanárok számára. Amennyiben volt elméleti alap, az két tételből állt:

- az inger gazdagsága és változatossága fokozza a figyelmet és a motivációt;
- az absztrakció foka kritikus változó a tanulásban.

A már többször idézett, Dale tapasztalati piramisában (Cone of Experience) legalul a „közvetlen, célirányos tapasztalat” áll, a csúcsban a „verbális szimbólumok” találhatók Valószínűleg ez volt a leggyakrabban idézett, emlegetett fogalmi modell. Mindig voltak fenntartások az alkalmassággal, a minőséggel és a hatékonysággal kapcsolatban, de általánosságban hitték, hogy minél több audiovizuális eszköz használnak, annál jobb. Vallották, hogy a tanulóknak minél több időt el kell töltenük a „valóságos világban”, vagy legalábbis annak valósághű reprezentációjában – és erre jó példa a mozgókép. Ma már ezek a feltételezések elméletileg tarthatatlanok, de némi érdemük azért így is van.

A kommunikációval foglalkozó elméleti szakemberek egykor azt is kimutatták, hogy az adott időben befogadható és feldolgozható információ mennyisége véges, és a sok csatornán keresztül folyó kommunikáció hátrányos is lehet (Travers, 1970), de egy átlagos osztály még egyelőre távol áll a médiatúladagolástól. Konklúzióként levonhatjuk, hogy az audiovizuális anyagok használatokor szem előtt kell tartani az üzenet megtervezésének alapelvét, azaz törekedni kell az egyszerűségre, az átláthatóságra és a logikus szerkezetre. A taneszközök, információhordozók, médiák és rendszerek számbavételén, osztályozásán kívül számos, lényegi, jól definiált probléma jelenik meg a szakirodalomban (Briggs, 1970., Vári, 1977., Moldstad, 1989., Fukuda, 1996.). Nevezetesen: az egyes kategóriákba besorolt és folyamatosan fejlődő médiumok, média rendszerek és média-jellemzők meghatározása; a képzési, tantervi célok-

30 Nádasi, A.: Oktatásmélet és technológia – A taneszközök és a médiaválasztás
http://okt.ektf.hu/data/nadasia/file/tananyag/oktataszemellet1_tananyag 5.html
Az audiovizuális oktatással és a programozott tanulással kapcsolatos ...

Az elméleti megfontolások mellett, a taneszközök kiválasztásának középpontjában az eredményes kommunikáció és a tanulók, továbbá tanári önmagunk sajátosságai állnak. Amennyiben céljainknak több taneszköz is megfelel, a gazdaságossági és egyéb tényezők mérlegelésével dönthetünk a használó taneszköz mellett. Számos média-kiválasztási szempont rendszer32, algoritmus33, és más didaktikus reprezentáció34 is készült.

\textbf{26. ábra: A vizuális médiumok kiválasztása (Nádasi, 1975)}

Az audiovizuális oktatással és a programozott tanulással kapcsolatos...

27. ábra: A média-kiválasztás szempontjai (Romiszowsky, 1968, Vári, 1977)

A Dale tapasztalati piramisában jelenlévő „autentikus valóság” képzetét aláásták az érzékeléssel foglalkozó elméleti szakemberek; amit az emberek látnak és hallanak, azt meghatározzák a már korábban kialakult kognitív/érzékelési sémák. A tapasztalat mellett az értelmezés is kulcsfontosságú. A fejlődés-éléktannal foglalkozó pszichológusok, akik hangsúlyozzák a kisgyermekkori konkrét tapasztalatok fontosságát, felismerték az absztrakció problémáját, és megkülönböztetik a reprezentáció konkrét, ikonikus és szimbolikus módjait. Az audiovizuális szakembereknek a „valós tapasztalattal” kapcsolatos aggodalmai is újraértelmezhetőek a tudás szociológiai értelmében: figyelni kell azokra a feszülségekre és korlátokra, melyek az iskolai tudás és a diákok iskolán kívül szerzett tudása közötti eltérések, hézagok miatt jönnek létre.

A tudományos közlemények tárgyát, többnyire pedagógiai technológiai leírások, oktatástechnológiai elemzések, empirikus vizsgálatok, szakmódszertani beszámolók képezik. Az alap- és alkalmazott oktatómédia kutatások legfontosabb, érvényes megállapításai:

- Egyik audiovizuális, elektronikus médiumnak sincs általában kitüntetett szerepe az eredményes és hatékony tanítás-tanulás megvalósulásában. (Nem minden új médium alkalmas minden célra, egy célra több médium is használható eltérő hatékonysággal.)

http://www.epa.oszk.hu/01200/01245/00024/Nadasi_A_cikk.html
• Mindegyik médium **speciális információközlési lehetőségekkel** rendelkezik és sajátos tanulási környezetet igényel és teremt. (A lényegi médium-jellemzők mellett jelentős szerepük van a technikai médium-jellemzőknek is.)

• Az információ-feldolgozás eredményessége nagymértékben függ a tananyag tartalmának, struktúrájának és a médium jellemzőinek az összehangoltságától. (Nem képezhető le adekvát módon minden struktúra minden információhordozóra.)

![28. ábra: Optimális médiumok, médiaelemek, média-kiválasztás (Elek. E.-né, 2001)](image)

• Az eredményes médiahasználatot meghatározza a tanulók egyéni és életkori sajátosságainak, képességeinek különösen a **kognitív szintjének** figyelembe vétele. (A változatos szemléltetés illetve a részletezettség, ismételhetőség differenciálási lehetőség.)

• A tanárok által determinált felhasználás módszere, az egyes médiumok és a teljes folyamat **tervezettsége** az eredményesség szempontjából kardinális pont. (A rendszerszemlélet érvényesítve a fejlesztés során optimálisan kidolgozott, bizonyítottan hatékony médiumot az alkalmazás során lehet eredménytelenül használni.)
4.2.2 A programozott tanítás és az oktatógépek

A programozott oktatás megvalósítása szempontjából lényeges technikai követelményeket fogalmazott meg Thorndike egy 1912-ben publikált művében. „Ha a technikai lelemény csodájaként egy könyvet úgy lehetne megszerkeszteni, hogy a második oldala csak azok számára válna láthatóvá, akik az elsőn már elvégezték azt, amire utasították őket, és így haladnának tovább, akkor ami jelenleg csak személyes tanári ráhatással érhető el, megoldható lenne nyomtatott anyaggal.”

37 Kiss, Á.: Programozott tanítás és pedagógiai technológia, OPI, 1976

Egy újfajta programozás technikájával jelentkezett 1960-ban Crowder. Ebben a lépések mérete nagyobb volt, mivel lineáris (skinneri) 10–15 szavas „lépéshez” képest itt már 35–40 szót is tartalmazott egy lépés, ahol a végén feltett kérdésekre a tanulónak több felelet közül kellett a helyeset kiválasztnia. A tanuló hibás válasz esetén kiegészítő információt kapott. Az ilyen típusú programot, amely lehetővé teszi a tanuló számára, hogy válaszától függően tovább-

haladjon egy ún. főágon; vagy letérjen a főágról, és kiegészítő információt kapjon, elágazásos programnak nevezzük. A lépés hossza és a lépésben szereplő kérdés már első ránézésre elárulja, hogy melyik programozási technikát követi a program. A lényegesebb tartalmi különbség a két programozási technika között azonban a lépéseken belüli kérdések funkciójában rejlik. Míg a lineáris programban a kérdésnek egyik igen lényeges feladata a sikerélmény biztosítása, addig az elágazásos programban a kérdésnek diagnosztikai funkciója van. Fontos hogy kiderítse, mennyit tanult a tanuló az adott lépésből, és ennek megfelelően a program mely ágára irányítsa.

Lineáris program: az ismeretszerzésnek egy útja van, amelyet minden tanulónak végig kell járni. (Kicsi a hiba lehetősége; kis sikerélmény, jó tanulóknak nágyobb lépéseket kellene nézni.)

1. ➔ 2. ➔ 3. ➔ 4.

Elágazásos program: az ismeretszerzés útja a tanulói választól függ. Addig nem léphet tovább, amíg a jó választ meg nem születik.

1. ➔ 2. ➔ 3. ➔ 4.

Vegyes típusú program: lineáris és elágazásos szakaszok jellemzik, melyben az elágazás a tanulói választól függ (Sheffield-i módszer).

Előnyei: jobban alkalmazkodik a tanulók egyéni sajátosságainak, a jobb képességű tanulók gyorsabban tanulhatnak - nagyobb információs egységekből is lépülnéhely.

1. ➔ 3. ➔ 6. ➔ 8.
2. ➔ 2. ➔ 4. ➔ 5. ➔ 6/a. ➔ 7.
3/a. ➔ 4. ➔ 5.

31. ábra: Oktatórogram struktúráko

A kutatások az oly egyértelműnek vélt programozott oktatást új megvilágításba helyezték. Tekintsük át, hogy melyek voltak korábban a programozott oktatás jellemző vonásai és hogyan változtak ezek. A hagyományos programozott oktatási szituációt az alábbiak jellemzik:

- a tanuló önállóan dolgozza fel a programot (ez az oktatás individualizálásának elve);
- a tanuló saját ütemében halad a program feldolgozásában;
- a tanuló kis lépésekben halad előre;
- a lépések gondosan meg vannak tervezve;
- a tanulónak minden lépésben válaszolnia kell;
- a tanulónak az eredményességéről azonnal információt kell szereznie.

Ezen jellemzők fontosságának megítélésében a különböző programozási szemléletek között voltak különbségek, mégis ezek összegezik a korai programozók gyakorlati probléma-megközelítését. Az oktatógépek használata – melyet az első időkben „tantervi robotnak”, „dehumanizáló eszköznek” nevezték – erős ellenállásba ütközött a pedagógusok részéről. Ezt az ellenállást igyekeztek leküzdeni a programozott oktatás hívei, bebizonyítva, hogy az oktatógép csupán eszköz a program bemutatására; a szituáció lényeges eleme a program, de ez nem kívánja helyettesíteni a tanárt, csupán segíti a munkáját. Felmerült a kérdés, hogy programozott tan könyvből vagy oktatógép segítségével bemutatott programból tanulnak-e eredményesebben a tanulók. A kísérletek igazolták, hogy nincs lényeges eltérés az oktatógépből vagy a programozott tan könyvből való tanulás eredményessége között. Ugyanakkor igazolódott, hogy az oktató-
gépes inkább pozitív viszonyulási hatást váltott ki. Fontos azonban megállapítani, hogy a nyomtatott információ és az oktatógépi közlés között médiálisan lényeges különbség nincs.

A szakemberek arra az álláspontra jutottak, hogy nem azt kell elemezni, mi a különbség az egyes programozási technikák között, hanem azt kell keresni, hogy mi bennük a közös R. Mager szerint, ez a tevékenység pedig a programírást megelőző munkában, a tanulási célok meghatározásában, a tananyag elemzésében, valamint a program értékelésében rejlik. Talán ez a legfontosabb pedagógiai üzenete a programozott oktatás elméletének és gyakorlatának. A hatvanas évek közepétől készülő programok már nemcsak verbális, hanem vizuális, auditív, illetve tapintási ingereket is alkalmaztak. Feldolgozni az anyagot nemcsak egyéni tempóban lehetett, hanem csoportok számára is készültek programok. Változatosabbak lettek az eszközi feltételek, megjelentek az eszközrendszer. Megnövekedtek a lépések méretei, a válaszok sem mindig nyílt, írásos válaszok voltak, hanem a gondolatban megfogalmazott válaszokra is építettek. A lineáris, illetve elágazásos stílusú programokon túl egyre gyakrabban születtek a két technikát vegyesen, illetve újabb technikákat is alkalmazó produktumok. A tantárgyak szélesebb spektrumát lehetett ilyen módszerekkel programozni, és a korábbinál jóval nagyobb hangsúlyt kapott a felfedezéses tanulás. A programozott oktatás ilyenfajta kiszélesítése már megnehezíti a program egyszerű, formális felismerését. A probléma megközelítésében továbbra is lényeges, hogy mit csinál a tanuló, miközben feldolgozza a programot (egyéni ütem, kis lépések stb.). Ugyanakkor súlyponti kérdést kap a program készítőjének tevékenysége, mint a mérhető célok meghatározása, utótesztek készítése, a megfelelő médiumok kiválasztása.

Azt, hogy az oktatási anyagok milyen mértékben programozottak, a programozottság fokának bevezetésével lehet feltáráni. A programozottság fokának meghatározásánál Vári Péter szerint, szerepet játszanak a következők:

Az audiovizuális oktatással és a programozott tanulással kapcsolatos...

32. ábra:

A programozott tanítás elvi és módszertani kérdéseinek hazai tisztázásához nagymértékben járult hozzá az, hogy a 60-as évek során az Országos Pedagógiai Intézet Didaktikai Tanszékének munkatársai Kiss Árpád vezetésével a programozott tankönyvekkel történő oktatás hatékonyságának vizsgálatára sz ámos kísér letet indítottak. 1970. április 6-tól 8-ig tartották az oktatás programozásával foglalkozó szakemberek első országos konferenciáját az Országos Pedagógiai Intézetben. Kiss Árpád, az OPI tanszékvezetője: „A szűkebben értelmezett programozott tanítás terén túljutottunk a kezdeti kísérleti szakában, amelyet főként tanulmányok és rövid, a szemléltetéshez alkalmas programrészek megjelenítése jellemzett. Több tárgyból van – és készül – terjedelmesebb, folyamatosan nagyobb időszakaszt kitölő program, ezeknek kísérleti felhasználása a tanításban számos probléma behatoló vizsgálatát teszi lehetővé.”

A „csoportos programozott oktatást” megvalósító, hazai tantermi vissza csatoló, feleltet választásos ellenőrző készülék, a DIDAKTOMAT Terényi Lajos és Dr. Kovács Mihály piarista tanárok munkája. Tény, hogy ezt a készüléket 100 középiskolában használták, sajátos módon. A következő idézet talán rávilágít arra, hogy a klasszikus programozott tanítás elveit miért, és az ajánlott technikai megoldást miért nem fogadta be a nagy hagyományú európai és magyar közoktatás: „A hazai tapasztalatok alapján úgy tűnik, hogy a szokott értelemben vett programozott oktatás iskolai bevezetése súlyos nehézségekkel jár. A legkomolyabb nehézség az, az egyéni tempóban való előrehaladás következtében atomizálódik az osztály. Ez más szóval azt jelenti, hogy a tehetséges és érdeklődő tanulók már karácsonyra elvégzik az egész évi anyagot, a gyengék, pedig még év végén is csak ott járnak, ahol karácsonykor kellett volna. Az osztály tagjait csak a tanterem közösen szívott levégője köti össze, a közös témában való
munkálkodás már nem. Hagyományaink és meggyőződésünket alapján egyaránt
nagyraképesüljük az osztályközösségben folyó pedagógiai munkát. Az osztálykö-
zösséget tehát nem szívésen áldozzuk fel még oly igéretes módszerek kedvéért
sem... A megvalósítható programozott oktatás lényeges tartozéka a minden
tanulóra kiterjedő azonnali visszacsatolás biztosítása.”

A felsőoktatás területén az oktatógépek és a programozott oktatás elter-
jesztésében nagy szerepet vállalt a Felsőoktatási Pedagógiai Kutatóközpont és
az OMFB javaslatára, Dúzs János és Simon Gyula tervei szerint, az UNESCO-
UNDP támogatásával 1973-ban létrehozott Országos Oktatástechnikai Központ
is. A 70-es évek közepén már mindegyik, tanárképzéssel is foglalkozó felsőokta-
tási intézmény rendelkezett néhány egyéni és kollektív oktatógéppel, és több
kíséret is történt oktatóprogramok fejlesztésére. Az oktatóprogram megtestes-
ítője az oktatócsomag is, (multimédia csmog, educational package;
instructional package; learning package; multimedia package), amely különféle
taneszközök (pl. audiovizuális, nyomtatott, elektronikus, multimédia stb.) rend-
szere, amely pontosan meghatározott tanulási célok elérését segíti, meghatáro-
zott tananyagon keresztül, strukturált tematika alapján, a teljesítményértékelés
és önértékelés lehetőségeit is biztosítva. Az oktatócsomag olyan eszköz-
együtttes, amely kiegészül a tanulási célok rendszerével, teljesítménymérő esz-
közökkel (tesztekkel, gyakorlati feladatokkal stb.), tanári v. tanulói felhasználási
útmutatóval aszerint, hogy csoportos (pl. tanórai) v. egyéni feldolgozásra ter-
vezték. Magyarországon először az 1970-es, 80-as években, az Országos Oktat-
ástéchnikai Központban fejlesztettek oktatócsomagokat, a közoktatás külön-
bÖZÖ tantárgya számára, a tantervi célok hatékonyabb elérése érdekében. Az
első magyar oktatócsomagok szerkesztője Tompa Klára oktatáskutató, aki ezen
eszközserekről eredményességét és hatékonyságát is bizonyította40. Szerinte
az oktatócsomagok típusait több szempontból is meghatározhatjuk. 1. A tan-
anyag mennyisége szerint: a) egy-egy ismeret, v. gyakorlati tevékenység elsajá-
títására tervezett, b) teljes tanítási témát felölelő, c) egy kurzus tananyagát
tartalmazó oktatócsomag. 2. A tanulás szervezése szerint: a) egyéni munkát
biztosító, b) egyéni v. csoportmunkát és tanári irányítást felváltva alkalmazó, c)
tanári irányításra alapozott oktatócsomag.

A távotkattatás (pl. Nyílt Egyetem, Open University, munkahelyi szakképzés és
továbbképzés, nyelvoktatás) használt nagy számban a hallgatók számára szét-
küldhető és egyéni tanulásra tervezett sokeszközű oktatócsomagokat. Az audi-
ovizuális reprezentáció és programozott tanulás elveit megvalósító oktatócso-

Istvánné, Vári Péter: Oktatócsomagok készítése és értékelése. Országos Oktatástechnikai Központ,
1977.
mag, az informatikai eszközkörnyezetbe ágyazott, interaktív, multimédia programok előfutára. A technika fejlődésével az oktatócsomag fizikálisan egyre „ki-sebb” lesz, hiszen a számítógép alapú multimédia program magába integrálja az állóképi, a hang-, a videó-, és a szöveges információt, biztosítja az interaktív feldolgozást, a folyamatos visszacsatolást. A pedagógiai programcsomag és a pedagógiai rendszer, valamint a számítógépes tanítás-tanulás és az e-learning megalapozója lényegében az audiovizuális szemléletetés, és a programozott tanítási koncepció volt, amelynek mindenkori tanuláselméleti megalapozottsága a technikákon túlmutatott, és végül elvezetett az ID, ISD, és HPT koncepcióhoz41.

4.3 ÖSSZEFOGLALÁS

A korábban használt, bevált audiovizuális taneszközök egy részét kiváltottak, és kiválthatja a számítógép, és számos, minőségileg új taneszköz is született. A digitalizált és a digitális taneszközök további nemzedékei is megjelentek. Pár

41 http://www.cognitivedesignsolutions.com/Instruction/LearningTheory.htm
Az audiovizuális oktatással és a programozott tanulással kapcsolatos...

évtized alatt az audiovizuális technika, a szemléletetés módszerei és eszközei megváltoztatták a gyakorlatot, valamiféle elmélet is kialakult. Az elmúlt fél évszázad során az oktatástechnológia, és az oktatás technológiája, jelentős változásokon ment keresztül. Kezdetben, a legtöbb audiovizuális szakember egyszerűen szaktanácsadónak tartotta magát; tanácsot adtak a tanároknak, tovább-képzéseket szerveztek, oktatási forrásanyagokat biztosítottak a tanárok számára. Amennyiben volt elméleti alap, az két tételeből állt: az inger gazdagsága és változatossága fokozza a figyelmet és a motivációt; az absztrakció foka kritikus változó a tanulásban. A kommunikációval foglalkozó elméleti szakemberek azt is kimutatták, hogy az adott időben befogadható és feldolgozható információ mennyisége véges, és a sok csatornán keresztül folyó kommunikációs hatránynos is lehet. Konklúzióként lehívjuk, hogy az audiovizuális anyagok használatakor szem előtt kell tartani az üzenet megtervezésének alapelvét, azaz törekedni kell az egyszerűségre, az átláthatóságra és a logikus szerkezetre. Edgar Dale ismert tapasztalati piramisában legalul a "közvetlen, célirányos tanulás" áll, a csúcsban a "verbális szimbólumok" találhatók. Valószínűleg ez volt a leggyakrabban idézett, emlegetett fogalmi modell. Mindig voltak fenntartások az alkalmassággal, a minőséggel és a hatékonysággal kapcsolatban, de általánosságban hitték, hogy mind több audiovizuális eszközt használnak, annál jobb. Valóban, hogy a tanulóknak minél több időt el kell tölteniük a "valóságos világban", vagy legalábbis annak valósághú reprezentációjában – és erre jó példa a mozgókép. Ma már ezek a feltételezések nemzetileg tarthatóak, de némi érdemük azért így is van.

A tanészökök, információhordozók, médiumok és rendszerek számbavételén, osztályozásán kívül számos, lényegi, jól definiált probléma jelenik meg a szakirodalomban. Nevezetesen: az egyes kategóriákba besorolt és folyamatosan fejlődő médiumok, média rendszerek és média-jellemzők meghatározása; a képzési, tantervi céloknak megfelelő média kiválasztása; az iskolai alkalmazás elfogadottságának, gyakoriságának, módzatainak kvalitatív és kvantitatív értékelése. A tudományos közlemények tárgyát, többnyire pedagógiai technológiai leírások, oktatástechnológiai elemzések, empirikus vizsgálatok, szakmódszertani beszámolók képezik. Az alap- és alkalmazott oktatómédia kutatások legfontosabb, érvényes megállapításai:

- Egyik audiovizuális, elektronikus médiumnak sincs általánban kitüntetett szerepe az eredményes és hatékony tanítás-tanulás megvalósulásában. (Nem minden új médium közönséges, minden céla, egy célra több médium is használható eltérő hatékonysággal.)

- Mindegyik médium speciális információközlési lehetőségekkel rendelkezik és sajátos tanulási környezetet igényel és teremt. (A lényegi médi-
um-jellemzők mellett jelentős szerepük van a technikai médium-jellemzőknek is.)

- Az információ-feldolgozás eredményessége nagymértékben függ a tananyag tartalmának, struktúrájának és a médium jellemzőinek az összehangoltságától. (Nem képezhető le adekvát módon minden struktúra minden információhordozóra.)

- Az eredményes médiahasználatot meghatározza a tanulók egyéni és életkori sajátosságainak, képességeinek különösen a kognitív szintjének figyelembe vétele. (A változatos szemléltetés illetve a részletezettség, ismételhetőség differenciálási lehetőség.)

- A tanárok által determinált felhasználás módszere, az egyes médiumok és a teljes folyamat tervezettsége az eredményesség szempontjából kardinális pont. (A rendszeres szemlélet érvényesítve a fejlesztés során optimálisan kidolgozott, bizonyítottan hatékony médiumot az alkalmazás során lehet eredménytelenül használni.)

Egy újfajta programozás technikájával jelentkezett 1960-ban Crowder. Eb-ben a lépésekből mérete nagyobb volt, mivel lineáris (skinneri) 10–15 szavas „lépéshez” képest itt már 35–40 szót is tartalmazott egy lépés, ahol a végén feltett kérdésekre a tanulónak több felelet közül kellett a helyeset kiválasztania. A tanuló hibás válasz esetén kiegészítő információt kapott. Az ilyen típusú program, amely lehetővé teszi a tanuló számára, hogy válaszától függően továbbhaladjon egy ún. főágon; vagy leterjedjen a főágról, és kiegészítő információt kapjon, elágazásos programnak nevezzük. A lépés hossza és a lépésben szereplő kérdés már első ránézésre elárla, hogy melyik programozási technikát követi a program. A lényegesebb tartalmi különbség a két programozási technika között azonban a lépéseken belüli kérdések funkciójában rejlik. Míg a lineáris programban a kérdéseknek egyik igen lényeges feladata a sikerélmény biztosítása, addig az elágazásos programban a kérdések diagnosztikai funkciója van. Fon-
tos hogy kiderítse, mennyit tanult a tanuló az adott lépésből, és ennek megfele-
ően a program mely ágára irányítsa. Ismert még G. Pask adaptív rendszere. A 60-as évek elején a programozott oktatás valamennyi szakembere lényegében e három technika valamelyike mellett kötelezte el magát. Megkezdődött az igazolás időszaka: a különféle programozási technikák külső jegyei alapján pró-
bálták bizonyítani egyik vagy másik fölényét. A további kutatások az oly egyér-
telműnek vélt programozott oktatást új megvilágításba helyezték. A hagyomá-
nyos programozott oktatási szituációt az alábbiak jellemzik:

- a tanuló önállóan dolgozza fel a programot (ez az oktatás individualizá-
lásának elve);
- a tanuló saját ütemében halad a program feldolgozásában;
- a tanuló kis lépésekben halad előre;
- a lépések gondosan meg vannak tervezve;
- a tanulónak minden lépésben válaszolnia kell;
- a tanulónak az eredményességéről azonnal információt kell szereznie.

Ezen jellemzők fontosságának megítélésében a különböző programozási
szemléletek között voltak különbségek, mégis ezek összegezik a korai progr-
amozók gyakorlati probléma-megközelítését. Az oktatógépek használata – me-
lyeket az első időkben „tantervi robotnak”, „dehumanizáló eszköznek” neveztek – erős ellenállásba ütközött a pedagógusok részéről. Ezt az ellenállást igyeke-
tek leküzdeni a programozott oktatás hívei, bebizonyítva, hogy az oktatógép
csupán eszköz a program bemutatására; a szituáció lényeges eleme a program,
de ez sem kívánja helyettesíteni a tanárt, csupán segíti a munkáját. Felmerült a kérdés, hogy programozott tankönyvből vagy oktatógép segítségével bemuta-
tott programból tanulnak-e eredményesebben a tanulók. A kísérletek igazolták,
hogy nincs lényeges eltéréz az oktatógépből vagy a programozott tankönyvből
való tanulás eredményessége között. Ugyanakkor igazolódott, hogy az oktató-
gépes megoldás inkább pozitív viszonyulási hatást váltott ki. A lineáris, illetve
elágazásos stílusú programokon túl egyre gyakrabban születtek a két technikát
vegyesen, illetve újabb technikákat is alkalmazó produktumok. A tantárgyak
szélesebb spektrumát lehetett ilyen módszerekkel programozni, és a korábbinál
jóval nagyobb hangsúlyt kapott a felfedezéses tanulás. A programozott oktatás
ilyenfajta kiszélesítése már megnehezíti a program egyszerű, formális felisme-
rését. A probléma megközelítésében továbbra is lényeges, hogy mit csinál a
tanuló, miközben feldolgozza a programot. Ugyanakkor súlyponti kérdést kap a
program készítőjének (instructional designer) tevékenysége, akinek feladata pl.
a méretet célok meghatározása, utótesztek készítése, a megfelelő médiumok
kiválasztása.
Az audiovizuális oktatással és a programozott tanulással kapcsolatos ...

A programozott tanítás elvi és módszertani kérdéseinek hazai tisztázásához nagymértékben járult hozzá az, hogy a 60-as évek során az Országos Pedagógiai Intézet Didaktikai Tanszékének munkatársai Kiss Árpád vezetésével a programozott tankönyvekkel történő oktatás hatékonyságának vizsgálatára számos kísérletet indítottak. Az oktatóprogram megtestesítője az oktatócsomag is, (multimédia csomag, educational package; instructional package; learning package; multimedia package), amely különféle taneszközök (pl. audiovizuális, nyomtatott, elektronikus, multimédia stb.) rendszere, amely pontosan meghatározott tanulási célok eléréseit segíti, meghatározott tananyagon keresztül, strukturált tematika alapján, a teljesítményértékelés és önértékelés lehetőségeit is biztosítva. Az oktatócsomag olyan eszközegyüttes, amely kiegészül a tanulási célok rendszerével, teljesítménymérő eszközökkel, tanári v. tanulói felhasználási útmutatóval aszerint, hogy csoportos, pl. tanóráin, v. egyéni feldolgozásra tervezték. Magyarországon először az 1970-es, 80-as években, az Országos Oktatástechnikai Központban fejlesztettek oktatócsonmagokat, a közoktatás különböző tantárgyai számára, a tantervi célok hatékonyabb elérése érdekében. A technika fejlődésével az oktatócsonmag fizikálisan egyre „kisebb” lett, hiszen a számítógép alapú multimédia program magába integrálja az állóképi, a hang-, a video-, és a szöveges információt, biztosítja az interaktív feldolgozást, a folyamatos visszacsatolást.

A pedagógiai programcsonmag és a pedagógiai rendszer, valamint a számítógépes tanítás-tanulás és az e-learning megalapozója lényegében az audiovizuális szemléletet, és a programozott tanítási koncepció volt, amelynek mindenkor a tanulásembéleti megalapozottsága a technikákon túlmutatott

4.4 ÖNELLENŐRZŐ KÉRDÉSEK

1. Melyek az oktatástechnológia fejlődési fázisainak meghatározói?
2. Melyek az audiovizuális és más taneszközök osztályai?
4. Melyek az audiovizuális oktatással kapcsolatos kutatások fő irányai és eredményei?
5. Kik a PO kiemelkedő teoretikusai? Skinner, Crowder, Pask, etc.
6. Milyen a programozott tanulással kapcsolatos vizsgálatok megalapozottsága?
7. Mely tanuláseméletek támasztják alá az audiovizuális, ill. programozott tanítás gyakorlatát?
5.A MULTIMÉDIA, A SZÁMÍTÓGÉPES TANULÁS, AZ IKT EREDMÉNYESSÉGE ÉS HATÉKONYSÁGA

5.1 CÉLKITŰZÉS ÉS KOMPETENCIÁK

A fejezet végére a hallgató képes lesz:

1. A multimédia oktatóprogram és a számítógépes tanulás viszonyának bemutatására;
2. A multimédia, mint komplex tartalomreprezentációs forma értelmezésére;
3. A programozott és egyéniesített tanulás elveinek és stratégiáinak kifejezésére;
4. A számítógépes tanítás és tanulás bevált módozatainak jellemzésére;
5. A multimédia forrásokat alkalmazó, elektronikus tanulási környezet leírására.

5.2 TANANYAG

A számos formátumban megjelenő multimédia programok és a számítógépes tanulás különféle módozatai az új információs és kommunikációs technológia (IKT) tartalmi komponenseivel váltak. A CAI, CAL, CMI, CBT után a „Technology Based, Open and Flexible Learning” irányzatok is az informatikai eszköztár gyors, világéretű fejlődésének következményei. Az IAV, a CDI, a CD-ROM, és az internet oktatásban történő alkalmazási lehetőségeinek kutatása számos új oktatástechnológiai kérdést vetett fel, amelyeket a tartalomszolgáltatás (content or knowledge industry) irányából célszerű elemezni. Az UNESCO dokumentumokban\(^\text{42}\), és más tanulmányokban\(^\text{43}\) korábban az „új”

A multimédia, a számítógépes tanulás, az IKT jelzővel is ellátott IKT (New Information and Communication Technologies – NICT) olyan eszközök, technológiák, szervezési tevékenységek, innovatív folyamatok összessége, amelyek az információ- és kommunikációközlést, feldolgozást, áramlást, tárolást, kódolást elősegítik, gyorsabban, könnyebben és hatékonyabban teszik. Az információs és kommunikációs technológiát két fontos nézőpontból tárgyalhatjuk: a technikai és a megismerési oldaláról.

A technikai nézőpont úgy mutatja be az információs és kommunikációs technológiát, mint az információs rendszer egy hullámát, amely integrálja a számítógépes rendszereket, a szoftvereket, az adatbázisokat, a kommunikációt, a távközlést, a hálózatokat és a mikroelektronikán alapuló multimédiát. A megismerési nézőpont nem más, mint az adatok, szövegek, képek és animációk, vagy ezek kombinációja, azaz multimédia és strukturált információ. Ennek a technológiának segítségével az explicit tudás bemutatható, könnyen hozzáférhető, digitális formában tárolható, terjeszthető és továbbküldhető. Ez elvezet egy olyan rendszerhez – először az emberiség történelmében – ahol az információ hozzáférhető, szállítható, tárolható, bemutatható és feldolgozható, tértől és időtől függetlenül.

Az oktatástechnológia – IT, a pedagógiai technológia – ET, és újabb ágazatai, pl. az oktatási rendszerfejlesztés – ISD, ill. a humán teljesítménytechnológia – HPT, az ezerfordulót követően is, annak a tudománya, hogy a megfelelő technológiai folyamatok és erőforrások megteremtésével, felhasználásával és szervezésével támogatjuk a tanulást, növeljük a teljesítményt. A meghatározásban a folyamat cselekmények sorozatát jelenti, amely meghatározott eredményre vezet. Ezen cselekedések közé tartozik az oktatási erőforrások megtervezése, létrehozása, felhasználása és szervezése. Az erőforrások alatt, a humán kapacitás mellett, gyakran a high-tech eszközöket értik. Az oktatásban használatos technológiák fejlődése, jelentős változásokat eredményeztek az oktatási rendszerekben, a számítógépek napról napra fontosabb szerepet játszannak a tanításban és a tanulásban. Jellemző az információ adekvát, multimédia reprezentációja, a tanulási folyamat szabályozottsága; az interaktivitás és a visszacsatolás.

Több nemzetközi vizsgálat eredménye alapján, jogos elvárás lett, hogy az oktatási szektor biztosítsa a 21. században kulcsfontosságúnak tartott IKT kompetencia elsajátításához szükséges infrastrukturális háteret, az információhoz, tudáshoz való gyorsabb és hatékonyabb hozzáférést, továbbá a különféle tech-

44 Diem Ho: Research, Innovation and Knowledge Management. UNESCO, July 20, 2007
nológiai eszközök módszertani integrációjával megvalósítsák a tudás innovatív módon történő elsajátítását, tudás-gazdag, multimédia tanulási környezet kialakítását. A komplex oktatási rendszerek kisérletileg igazolt fejlesztési metodikáját és modelljét a számítógépes multimédia programok és az interaktív hálózati információelosztási rendszerek fejlesztői jól hasznosítják, és új irányba lenlendítették. A számítástechnikai eszközök, a hálózati alkalmazások, az optikai tárolók gyors fejlődése következtében, a hipermedia és multimédia kifejezés egyre inkább a számítógéphez kötődött, az oktatástechnológiában általánosan használt interaktivitás és multimédia fogalom napjainkra új értelmet nyert.

5.2.1 Multimédia források, oktató programok

A multimédia kifejezés számos diszciplína szerint értelmezhető. A multimédia egy komplex tartalomreprezentációs forma, egyben rendszer-, és hardverkonfiguráció. A multimédia természetesen nem korlátozódik csupán az oktatás területére, a reklám, a tájékoztatás, a művészet, a muzeológia is profitált belőle, és „interaktivitásból” is. A programozott oktatás elveit megvalósító egyéni tanulási rendszerek, a számítógépes oktatás különféle módzatai a többcsatornás információközlés mellett, az interaktív kommunikáció szabályozott tanulástechnikai és metodikai lehetőségét is megteremtették. Ennek lényege a számítógépes platformon megjelenített multimédia program, információ, olyan multimédia dokumentum, amely legalább egy diszkret és egy folytonos médiumot tartalmaz, amelyek előállítását, célorientált feldolgozását, bemutatását, tárolását valamint továbbítását számítógép vezérlí, ill. hajtja végre. Technikailag adatokat, szövegeket, grafikákat, animációkat, álló- és mozgófényképeket és hanganyagot tud megjeleníteni. A multimédia elemek közötti időbeli, térbeli és tartalmi kapcsolatot legkönyebbben számítógéppel, ill. a rajta futó programok segítségével lehet biztosítani. Az oktatási gyakorlatban a legújabb, interaktív hálózati multimediának különböző technikai megvalósításai ismeretesek. A cd-i tisztavirág életet élt, és cd-rom is lassan az Internet áldozata. Tartalmi struktúrájuk azonban hasonló, általában nem lineáris, hanem a felhasználók nagyobb szabadságot biztosító hipermédia struktúra. M a természetes, hogy a multimédia-információ megfelelő helyre, bármilyen nagy távol-ságra juttatását a számítógépes hálózatok teszik lehetővé.

A multimédia olyan technológia, mely a számítógéppel segített interakciót összetett médiarendszerrel teszi lehetővé, a képi megjelenítési formák sokaságának integrálásával, mint az adatok, szöveg, hang, grafika, animáció, állókép, mozgókép és valós idejű szimuláció. A multimédia többet jelent az egyes médiumok információs és oktatási célokból való együttműködésénél vagy összekap-

A multimédia, a számítógépes tanulás, az IKT...

33. ábra: A tanulási környezet mezovilág modellje (Komenczi, 2009)

Ez a modell a mikrovilág és a hipervilág hídjának tekinti az informatizált iskolai tanulási környezetet, a mezovilágot, és így jellemez: „Azt a teret, ahol a globális reprezentáció reprezentációinak az egyedi mikrovilágokba való beépítése történik, modellünkben mezovilágnak nevezzük. Ez az a tanulási környezet, amely összekapcsolja, optimális esetekben harmonikusan illeszti a mikrovilágokat a hiper (makrovilágával). Mi jellemző a mezovilágokra? A mezovilág a tudás kialakításának színtere, elsősorban a tanulás formális szakaszaiban. Míg a hagyományos iskola tanulási környezete alattában zárt, addig a mezovilág nyitott tanulási környezet. Egyrészt nyitott a tanulói mikrovilágok sokasága felé, másrészt kinyílik a „hipervilág” irányába is, behozza a világot a tanulási környezetbe, és felkészíti a tanulókat a világháli hipermédia rendszerében történő „navigálásra”, forrásként használva fel a médiaszféra szelektált, válogatott tartalmait. A mezovilág fejlesztő hatások szervezett rendszere, az a hely, ahol az egyéni szükségletek és előfeltételek kerülnek a tanulási-tanítási folyamat centrumába, ahol a tanár és a diák új szerepe megnyilvánul. (Reigeluth, 1999; Komenczi, 1998).” Mindezek alapján belátható, hogy az oktatást segítő, interaktív, vagy egyszerű multimédiás forrásokat, amelyeket felelős oktatási, tudományos és kulturális intézmények állítanak elő, vagy a világhálón, vagy a tanulást segítő, elektronikus taneszközök rendszerében találjuk meg. Értékelését, alkal-

5.2.2 A számítógépes tanulás módozatai

47 The Post-LEGO Learning Object (the latest draft of this paper is always available online) http://wiley.byu.edu/post-lego/post-lego.pdf David Wiley, November 5, 1999.
Az 1970-es évek közepén, a National Science Foundation\(^{49}\) két nagyszabású kutatási projektet indított a számítógéppel segített oktatás, a CAI (Computer Assisted/Aided Instruction) hatékonyságának demonstrálása céljából. Az értékelés a PLATO (Programmed Logic For Automatic Teaching Operations), ill. a TICCIT (Time-Shared Interactive Computer-Controlled Information Television System) rendszerek hatékonyságának, költségeinek, technikai használhatóságának és oktatási eredményességének vizsgálatára egyaránt kiterjedt\(^ {50}\).

\(^{49}\) Nemzeti Tudományos Alap, az USA független szövetségi szervezete, amelyet a Kongresszus 1950-ben alapított.

\(^{50}\) Evaluation of the Educational Effectiveness of PLATO and TICCIT. Anastasio, Ernest J.; Alderman, Donald L. 1973 http://eric.ed.gov/?id=ED088934
A multimédia, a számítógépes tanulás, az IKT...

35. ábra: A 60-as években fejlesztett PLATO rendszer **PLATO Computer System**

A kutatások azóta is folynak, áttekintésükre a leckehez kapcsolódó gyakorlaton kerül sor. A pedagógiai komponens keretében a kutatók a számítógéppel segített oktatáskor a tanulók teljesítményére és viselkedésére, il. az oktatók, az adminisztrátorok, és az adott oktatási intézmény működésére gyakorolt hatását egyaránt értékeltek. Azonosították a számítógépes tananyagok (course materials) fejlesztéséhez, működtetéséhez és karbantartáshoz lehetséges módokat is. A kutatás ugyan nem vezetett látványos eredményekhez, de megalapozta az oktatástechnológia fejlesztési irányait és kimutatta lehetőségeit. Azóta a számítógépes tanítás-tanulás számos formában létezik.

51 Computer Based Learning
A multimédia, a számítógépes tanulás, az IKT ...

A CMI (Computer Managed Instruction), vagyis a számítógéppel menedzselt, szervezett tanítás esetében a tanulók nem a géppel tanulnak, hanem a tárolt adatok, pl. tesztek, teszteredmények segítként a tanítási folyamat szabályozását. A CAI (Computer Assisted/Aided Instruction), vagyis a számítógéppel segített tanítás már a tananyagot, a feladatokat is biztosítja, kezdetben a tanulói terminálakon, később a személyi számítógépen. A CBI (Computer Based Instruction), tehát a számítógépre alapozott tanítás a folyamatszabályozást és az információátadást egyaránt lehetővé teszi. E két utóbbi oktatógépként funkcionál, gyakorlatilag a programozott oktatást/tanulást valósítja meg.

Érthető, hogy a személyi számítógépek, majd Internet elterjedésével a hangsúly még inkább az önálló, egyéni tanulásra tevődött, bár a gyökereket jelentő programozott tanulási stratégiát, egyebek mellett, mindig is az egyéni különbségek figyelembe vételére alapozta maga Skinner is. B. Bloom „Mastery Learning” stratégiája\(^{52}\) amelyet optimális elsajátítási stratégiaként\(^{53}\) ismertünk meg, míg használatos. A szintén ismert, Snow-féle adaptív tanulási stratégia alapja az a felismerés, hogy az egyes tanulók tanulási képességei, adottságai egymástól lényegesen eltérőek, és ezek a különbségek eltérő tanulási környezetek, eltérő tanítási eljárásokat igényelnek. A Mastery Learning, amelyet Gusky és Gates 1986-ban újra felfedezett, a következő algoritmus\(^{54}\) szerint jellemezhető:

• A tananyag felosztása kis egységekre (elsajátítás, értékelés).
• A leghatárosabb tanítási-tanulási technika alkalmazása az elsajátítás érdekében.
• Formatív, diagnosztikus tesztek szerkesztése és kitöltése, amelynek során a tanuló visszacsatolást kap saját előrehaladásáról.
• Azoknak a számára, akik nem sajátították el az anyagot, kiegészítő eszközöket és tanulást kell biztosítani.
• A tanulási egység elsajátításának ellenőrzése szummatív teszttel.
• Azokat a tanulókat, akik nem sajátították el az egységet, újratanítjuk úgy, hogy addig csatolunk vissza a folyamat bármelyik részéhez, amíg el nem érik a megfelelő szintet.

Az újra felfedezés eredményeként és a multimédia térnyerésével az 1980-as években megjelentek tehát a CAL (Computer Assisted/Aided Learning), a CBL (Computer Based Learning) az interaktív multimédia programok, majd a 90-es évek közepétől a WBL (Web Based Learning) e-learning programok és rendszerek. Ezek hatékonyága most is kutatás tárgya. Az egyénre szabott tanításgyanúság szerint a tanítás-tanulás eredményességét, a hetvenes években számos kutatás igazolni látszott, de ez nem feltétlenül CAI és CAL rendszer hatása. Az oktatástechnologiával és –tervezéssel, az IKT-vel kapcsolatos kutatások irányát és metodikáját megszabó kulcsfaktorok között fontos az adott elektronikus tanulási környezet, infrastruktúra állapota, a tartalomipar és szolgáltatás rendszere, de három nagy kutatás (OECD 1999-2001.) is megállapította, hogy világszerte nem az infrastruktúra megléte vagy hiánya, hanem sokkal inkább a tanárok szerepvállalása vagy ellenállása határozza meg az oktatási módszertani újítások elterjedését, illetve a tanulási teljesítményeket.

A második lecke során hivatkoztunk arra, hogy az USA National Center for Education Statistics 2010-es adatai szerint, 2008-ban a 17 éves amerikai gyerekek olvasási/szövegértési és matematikai pontszámait alig haladják meg a hetvenes évek elején elért pontszámokat. Ezek az eredmények eléggé szívfájdítóak, figyelembe véve, hogy a hetvenes években, a legtöbb iskolában még egyáltalán nem volt számítógép. Statisztikailag jelentős azoknak az oktatásteknológiai kutatásoknak a száma, ahol nem sikerült bizonyítani a tanítás és a tanulás fejlődését. Bár az USA és Magyarország IKT ellátottsági adatai között nagy a különbség, a hazai és nemzetközi IKT specifikus kutatási adatok sem megnyugtatóak, miként az OECD PISA 2009 adatbázisában „A számítógép használat hatása a digitális szövegértésre” ábra mutatja:

37. ábra: A számítógép használat hatása a digitális szövegértésre

szövegértés. Oktatási Hivatal, 2011.) A TBT (Technology Based Teaching) tanuláslméleti, metodikai és oktatástechnológiai elvei kevésbé fejlődtek, ellentétben az interaktív elektronikus tanulási környezet és a multimédia formátumú reprezentáció lehetőségeivel. Ez feltehetően a már említett és újabb stratégiák optimális vizsgálati terepe és kerete lesz.

A hagyományos számítógépes tanító, gyakorló, fejlesztő, ill. ellenőrző programok kiadott, vagy házilag megírt egy-egy tanítási téma, esetleg tantárgy individuális feldolgozását, számonkérését számítógép segítségével biztosító oktatási anyag, Mivel a tanuláshoz és tanulásirányításhoz szükséges teljes információt tartalmazza, a tanárt részben képes helyettesíteni. Az oktatóprogramhoz szükség szerint kapcsolódhat más információs forrás is (pl. kísérleti eszközök), amelyek használatát szintén a számítógép irányítja a program sze- rint. A programok lehetnek lineárisak és elágazásosak, vagy vegyes típusúak. A mágneses hordozókat az optikai hordozók teljesen kiváltották.

38. ábra: Számítógépes oktatóprogram a fizika tanításához

A szimuláció értelmezését a modellezés fogalma nélkül nem végezhetjük el. Ez bonyolult műszaki, természettdudományi, vagy egyéb rendszerek vizsgálatának egyszerűsített, gyakran egyedül lehetséges módszere. Szimulációs modell az a modelltípus, amely a vizsgált jelenséghez hasonló viselkedés mutatásá-
ra képes, vagyis amikor a modell viselkedési elemei és a valóságos rendszer viselkedési elemei között egyértelmű kapcsolat teremthető. A szimulációs modell tehát nevének megfelelően szimulálja a rendszert. A szimuláció egy meglévő, vagy egy tervezett folyamat vizsgálata: egy rendszer, egy folyamat fizikai vagy számítógépes modelljén tanulmányozzuk a rendszer várható, illetve valódi viselkedését.

A kutatás számára a számítógépes szimuláció lényege a struktúrált adatmodell létrehozása, majd az ezen való kísérletezés.

Az oktatás számára készült számítógépes szimulációk feladata, hogy egy bonyolult folyamatot egyszerűen, érzékletes látvánnyal, de ugyanakkor valósághűen mutassanak be. Szimulációs és demonstrációs programok, egy-egy jelenség, folyamat, logikai és strukturális összefüggések stb., amely algoritmizálható és matematikai módszerekkel megfogalmazható, alkalmas számítógépi bemutatásra. A számítógépes szimulációk hatékonyságának egyik legfontosabb fokmérője az interaktivitás, amely Szűts Zoltán meghatározása szerint: „Az interaktiv kifejezés leginkább a multimédiára használható, ahol egy bizonyos képre vagy szövegre kattintva a közeg válaszol; egy klippel, képpel, vagy a hypertext esetében újabb szöveggel.” Az interaktivitás a komplex szimulációs programokban nyer értelmet.

Az animáció technikailag olyan grafikával generált mozgókép, mely egy-mástól kis mértékben eltérő képkockák, fázisképek sorozatából áll. Rajzfilmként és trükkfilmként ismertük meg. A modern számítógépes animációs programokban bármely paraméter animálható. Az animációs görbe, azaz valamilyen tulajdonság időbeli megváltozása, több módszerrel megadható. Az oktatóprogramokban alkalmazott szimuláció, gyakran kézzel vezérelhető animáció, amely programvezérléssel is lejátszható. Ez utóbb esetben a paramétereket a felhasználó is megadhatja.

56 http://magyar-irodalom.elte.hu/vita/szz.html
57 http://www.iskolaiszimulaciok.hu/szimulacios-program-alkalmazasa-az-oktatasban
A számítógép az iskolában jól felhasználható egyéni feladatok megoldására, ez az elektronikus munkakörnyezetek általánossá válása miatt is kívánatos. A tanítási munka során célszerű olyan feladatokat is kitűzni, amelyeket a tanulók önállóan, esetleg otthon oldanak meg (pl. hosszabb számolások a matematika, geometria köréből, adatgyűjtés és feldolgozás különböző témakörökhoz kapcsolódóan stb.) Könnyű belátni, hogy ilyen munkát csak megfelelő szintű gépismertet, digitális írástudás birtokában lehet végezni. Első lépésként tehát a géppel történő kommunikáció szabályait kell megtanítani a tanulóknak, és csak ezt követően célszerű önálló feladatokat adni.

Egyre több kiadó, főként tankönyvkiadó, forgalmaz olyan szoftvercsomagokat, amelyek komplet digitális tananyagokat, tantárgyi feladatgyüjteményeket, animációkat, manipulálható képtárat, szimulációs kísérlet gyűjteményeket tartalmaznak. A digitális táblák működtetéséhez szükséges szoftverek egy új, intelligens szemléletet, visszacsatolást tesznek lehetővé, de a tartalmat és a szakmetodikai struktúrát, a 3. generációs, digitális tankönyvek, pedagógiai

39. ábra: Szimuláció – interaktív kísérletek
(\texttt{http://sulifizika.elte.hu/html/m5.html})

58 A TINA elektronikus laboratórium, áramkörtervezés \url{http://www.tina.com/Hungarian/tina/}
A multimédia, a számítógépes tanulás, az IKT programcsomagok és rendszerek, valamint az interaktív, multimédia formátum biztosítja. Tipizálásuk jelenleg nehezen lenne elvégezhető, hordozójuk DVD, CD-ROM, újabban pendrive. Mindezen oktató szoftverek az elektronikus, digitális könyvtárák, adat-, és tudásbázisok állományában is megjelennek. Eklatáns pél-daként, az SDT rendszert már bemutattuk.

40. ábra: http://www.mikrosuli.hu/oktatoszoftverek/fizika

A számítógépes játékprogramok, bár nem kapcsolódnak szorosan a tanórai tanítási tevékenységhez, hatásuk, népszerűségük következtében nem hanyagolhatók el. Sokféleségük miatt a tanulóiifjúság valamennyi korosztályát érintik. Számos játék a jó reflexeken és megfigyelőképességen túl a tanulók kreativitását is fejleszti, miközben ismereteik is jelentősen gyarapodnak.

5.2.3 A E-TANULÁS ÉS AZ IKT

Az e-learning - nevéből adódóan - „elektronikus tanulást” jelent. Gyakorlatilag az elektronikus eszközökkel és szolgáltatásokkal támogatott tanítási-tanulási formát jelenti, mely az utóbbi időszakban egyre inkább elterjed és kihat az oktatás minden területére. Az e-learning fogalmát sokan és sokféleképpen értelmezik. Gyakorlatilag ebbe a kategóriába tartoznak mindazon oktatási, képzési, tanulási módszerek, folyamatok és eljárások, amelyek az új ismereteik át-
adása és elsajátítása során elektronikus alapú eszköz és szolgáltatásrendszert alkalmaznak. Tágabb értelemben tehát az e-learning eszköztárába tartoznak mindazon elektronikus rendszerek, melyek használata alkalmasítható a tanítási-tanulási folyamatok támogatására. Ilyenek például a tv, rádió, a számítógép is.

Az első generációs e-learning rendszerek az oktatási intézmények szemléletét valósítják meg. A tanuló az LMS révén virtuális osztályteremben kurzusokat néz végig, gyakorlatokat old meg, majd levizsgázik. Tanulmányai során kvázi-determinált módon bejárja a hozzárendelt útvonalat, a tanulás szenvedő alanyává válik. A második generációs e-rendszerekben a tanuló maga határozza meg fejlődésének útvonalát, nemcsak a tanulás folyamatában, hanem a tanulás tervezésében is aktív résztvevőnek számít. Külső kényszerítő hatások nélkül kell megrajzolnia, majd végigjárnia a saját fejlődési útvonalát. Természetesen a hagyományos módszertanok jobban illeszkednek az oktatási intézmények gyakorlatához, míg az új generációs szemlélet kevésbé formális környezetben találja meg a helyét

41. ábra: A „hagyományos” e-tanulási rendszer (E-learning 1.0)

Az elektronikus tanulás folyamatainak támogatása ugyanakkor a számítástechnikai eszközök, illetve a hálózatok, az Internet kialakulásával és folyamatos elterjedésével alakulhatott ki és terjedhetett el széles körben. A számítástechnikai eszközökkel támogatott oktatás statikus formája az a helyzet, melyben az oktatóanyag valamilyen digitális adathordozón (pl. CD, DVD stb.), vagy hálózatton jut el a tanulókhoz, melynek lejátszásához, illetve a tananyag elsajátításához a hallgató számítógépet használ. Miként említettük, az e-learningnek ezt a formáját a szakirodalom gyakran CBT-nek (Computer Based Training) hívja.
Ebben az esetben a tananyag oktatója és a tanuló között semmilyen kapcsolat nincs, és menedzselt, tervezett, szervezett és kontrollált oktatásról csak a programozott tanítás értelmében beszélhetünk. A CBT-t tekintik az e-learning korai formájának, mely azonban mind a mai napig alkalmazható és elérhető. Termésszetesen a közoktatás gyakorlatában éppen ennek van létjogosultsága a tanítástanulás egyes, individualizált szakaszaiban.

42. ábra: Az e-tanulási rendszer új szakaszba lép

A számítógépes hálózatok fejlődése azonban megteremtette annak lehetőségét, hogy az elektronikus tanulás szervezett formában, valódi képzésmenedzsmenttel támogatva kerüljön felhasználásra. Ezt a szakirodalom „Online learning”-nek, vagy WBT-nek nevezi. Jelentősége a szakképzésben és a felsőoktatásban kiemelkedő. Az e-learning lehet szinkron, vagy aszinkron. Ennek a felosztásnak az alapja az alapja a tanár és a tanuló egymással való időbeni és térbeli kapcsolat. Szinkron módszernek tekintjük mindazon oktatási formákat és tevékenységeket, melyek során a tanár és a tanuló egy időben, de egymástól térben elkülönülve oktat, illetve tanul. Ilyen például az ún. „virtuális osztályterem”, amely nagyon sokban hasonlít a jelenléti oktatáshoz, ugyanakkor lehetőséget teremt arra, hogy az oktató és a tanuló között akár nagy térbeli távolságot is áthidaljon. Ezzel szemben az aszinkron módszer alkalmazása a tanár és a tanuló időbeni és térbeli teljes elkülönülését feltételezi, tehát a tanár elkészíti a tananyagot, és azt a tanuló annak a szerveren történő elhelyezése után saját ütemezésében sajátítja el.

Egy másik felosztás alapja a tanulóknak a tanulási folyamatban történő részvételének jellege, mely szerint megkülönböztetünk egyéni, saját ütemben
történő tanulást („self-paced learning”) és ún. kooperatív tanulási módot („collaborative learning”). Ez utóbbi feltételezi a tanulók egymással való kapcsolatát, és a fentebb említett módon tovább bontható aszinkron (pl. fórum, stb.) és szinkron (pl. virtuális osztályterem, alkalmazás-megosztás) módokra. Az elektronikus alapú oktatás alkalmazásának legfontosabb előnyei a következők:

- Csökkenek az oktatáshoz, képzéshez kapcsolódó járulékos (pl. utazás, szállás stb.) és adminisztrációs költségek.
- A hatékony képzési módszer (egyéni tanulási utak és módszer, testre szabott tudásátadás, egyéni szubjektív tananyagok).
- Globális a hozzáférés a tudáshoz (a szükséges tudás a kívánt időben a megfelelő embernek, az adott üzleti cél szükségletei szerint).
- Az oktatási tartalom folyamatosan bővíthető és könnyen, folyamatosan megújítható. A tanulási folyamat nyomon követhető, és a megszerzett tudás számon kérhető.
- A tanulás bárhol és bármikor saját ütemben folytatható. Az elektronikus oktatás, és az ehhez kapcsolódó szolgáltatások a tanulási kultúrába beépülnek, és motivációs tényezőként hatnak.

5.3 ÖSSZEFOGLALÁS

A multimédia kifejezés számos disziplína szerint értelmezhető. A multimédia egy komplex tartalomreprezentációs forma, egyben rendszer- és hardverkonfiguráció. A multimédia természetesen nem korlátozódik csupán az oktatás területére, a reklám, a tájékoztatás, a művészet, a muzeológia is profitált belőle, és „interaktivitásból” is. A programozott oktatás elveit megvalósító egyéni tanulási rendszerek, a számítógépes oktatás különféle módzatai a többcsatornás információközlés mellett, az interaktív kommunikáció szabályozott tanulástechnikai és metodikai lehetőségét is megteremtették. Ennek lényege a számítógépes platformon megjelenített multimédia program, információ, olyan multimédia dokumentum, amely legalább egy diszkret és egy folytonos médiumot tartalmaz, amelyek előállítását, célorientált feldolgozását, bemutatását, tárolását valamint továbbítását számítógép vezérlő, ill. hajtja végrehajtását segítő, interaktív, vagy egyszerű multimédiás forrásokat, amelyeket felelős oktatási, tudományos és kulturális intézmények állítanak elő, vagy a világhálón, vagy a tanulást segítő, elektronikus taneszközök rendszerében találjuk meg. Értékelését, alkalmazását a mezovilág segíti, jó esetben egy pedagógiai rendszer részeként. Egyes kutatók szerint: „A virtuális tanulási környezetben résztvevő oktatók és annak tervezői elismerik az adott tanulási környezet
zetet alkotó értelmes, és újrafelhasználható elemek fontosságát. Az újrafelhasználható oktatási anyagokkal először szembenülő tanárok az adott egyéni oktatási és pedagógiai célok elérése érdekében gyakran lebontják az adott tananyagot alkotrészeire, majd a tananyagot néhány elem kicsérélésével újra felépítik. Elvileg, az újra felhasználható, vagy helyettesíthető oktatási elemek, a multimédia tanulási források és tanulási objektumok, a lebontási és helyettesítési folyamatok egyszerűsítésével gyorsítják, és hatékonyá teszik az oktatásfejlesztést.” Mások szerint, gyakorlatilag ez nem, vagy csak részben igaz, kész tankönyvek, tananyagok mesterséges szétdarabolása rendkívül fáradásos, és gyakran értelmetlen.

A számítógép oktatási célú használatának számos módszere ismeretes, eredményességét és hatékonytágát több kutatás elemezte. A számítógéppel támogatott tanulás (Computer Assisted Instruction – CAI) előzménye a mechatronikus, elektromechanikus, később elektronikus oktatógépek, lineáris és elágazásos programokat használó programozott tanulás.

Az újra átgondolt tanítási-tanulási stratégiák eredményeként és a multimédia ténnyerésével az 1980-as években megjelentek tehát a CAL (Computer Assisted/Aided Learning), a CBL (Computer Based Learning) az interaktív multimédia programok, majd a 90-es évek közepétől a WBL (Web Based Learning) e-learning programok és rendszerek. Ezek hatékonyája most is kutatás tárgya. Az egyénre szabott tanítás-tanulás eredményességét, a hetvenes években számos kutatás igazolni látszott, de ez nem feltétlenül CAI és CAL rendszer használatát. Az oktatástechnológiával és -tervezéssel, az IKT-vel kapcsolatos kutatások irányát és metodikáját megzabó kulcsfaktorok között fontos az adott elektronikus tanulási környezet, infrastruktúra állapota, a tartalomipar és szolgáltatás rendszere, de három nagy kutatás (OECD 1999-2001.) is megállapította, hogy világszerte nem az infrastruktúra megléte vagy hiánya, hanem sokkal inkább a

tanárok szerepvállalása vagy ellenállása határozza meg az oktatási módszertani újítások elterjedését, illetve a tanulási teljesítményeket.

Az első generációs e-learning rendszerek az oktatási intézmények szemléletét valósítják meg. A tanuló az LMS révén virtuális osztályteremben kurzusokat néz végig, gyakorlatokat old meg, majd levizsgázik. Tanulmányai során változó-determinált módon bejárja a hozzárendelt útvonalat, a tanulás szenvedő alanyává válik. A második generációs e-rendszerekben a tanuló maga határozza meg fejlődésének útvonalát, nemcsak a tanulás folyamatában, hanem a tanulás tervezésében is aktiv résztvevőnek számít. Külső kényeszerű hatások nélkül kell megrajzolnia, majd végigjárnia a saját fejlődési útvonalát. Természetesen a hagyományos módszertanok jobban illeszkednek az oktatási intézmények gyakorlatához, míg az új generációs szemlélet kevésbé formális környezetben találja meg a helyét.

Szakirodalom az 5. leckéhez

Anastasio, Ernest J.; Alderman, Donald L.Evaluation of the Educational Effectiveness of PLATO and TICCIT. (1973) http://eric.ed.gov/?id=ED088934

A multimédia, a számítógépes tanulás, az IKT ...

History of Educational Technology http://www.slideshare.net/BicolanangDiMagBicol/history-of-educational-technology-11367003

Kadocsa L.: Az e-learning pedagógiai módszertani konzervenciái (PowerPoint).

Kiss, Á.: Programozott tanítás és pedagógiai technológia, OPI, 1976

Molnár, I.: Multimédia http://users.atw.hu/molnarimre/AMultimedia.html

Nádasi, A.: Multimédia http://www.kislexikon.hu/multimedia_a_a.html#ixzz2cUwhSla2

Tompa Klára: Tanészkoz jegyzék a Nemzeti Alaptanterv tükrében. Új Pedagógiai Szemle 1997 november
5.4 Önellentörző kérdések

1. Melyek a multimédia oktatóprogramok lényegi jellemzői és formátumai?
2. Mi jellemzi multimédia forrásokat alkalmazó, elektronikus tanulási környezetet?
3. Melyek a lényeges tanítási-tanulási stratégiák?
4. Jellemezze a CAI, CAL, CMI, CML rendszereket!
5. Mi a WBT, TBT és az E-learning rendszerek fő jellegzetessége?

Multimédia

Nádasi, A.: Multimédia szócikk
http://www.kislexikon.hu/multimedia_a_a.html#ixzz2cUwhSla2

(lat. „többszörös közvetítők”):

1. Eredetileg a több érzékszervi csatornára ható információhordozók gyűjtőneve. Az oktatástechnológiai szemlélet, amelynek egyik megalapozója az audiovizuális szemléletetés, kísérletileg is igazolta a többszorosítás ismeretközlés oktatási célú alkalmazásának eredményességét. A verbális (auditív; hang) információval párhuzamosan megjelenő vizuális információ (rajz, álló- és mozgófénykép) a technikai megoldástól függetlenül gazdagította a tanítás-tanulás módszer- és eszköztárát.

2. A multimédia a technikai médiumok (információhordozók és információközvetítők) rendszerbe állított, a tananyagot tartalmazó együttese, amely a tanár és a tanulók számára egyaránt használható. A rádióvíziós oktatóprogram, a hangosított diasorozat, az oktatócsomag lényegében multimédia-rendszerek.

3. A programozott oktatás elveit megvalósító egyéni tanulási rendszerek, a számítógépes oktatás különféle módozatai a többszorosítás információközlés mellett az interaktív (interaktív kommunikáció) szabályozott tanulástechnikai és metodikai lehetőséget is megteremtették. Ennek alapja a multimédia oktatóprogram, amely a kötött (isk.-i és tanfolyamrendszerek), valamint a távoztatás i rendszerben egyaránt használható, s többnyire a hagyományos (nyomtatott), az elektronikus (videó- és számítógépes) és a telekommunikációs (RTV, adatátviteli hálózati) rendszerek kombinációi. Az oktatási gyakorlatban terjedő legújabb interaktív multimédíának különböző technikai megvalósításai ismeretek: a CD-ROM, a CD-I és az IAV (interaktív videó). Tartalmi struktúrájuk hasonló, általban nem lineáris, hanem a felhasználóknak nagyobb szabadságot biztosító hipermédia struktúra. A CD-ROM alapú (optikai lemez) multimédia megfelelő számítógép (multimédia PC) segítségével adatokat, szövegeket, grafikákat, ani-
mációkat, álló- és mozgófényképeket és hanganyagot tud megjeleníteni. Tárolókapacitása 650 Mbyte, amely gyakorlatilag azonnal leihívható a kívánt formában. Ez az információneményiség mintegy 250 000 oldal nyomtatott szövegnek felel meg. A CD-I alapú multimédia annyiban különbözik a CD-ROM alapútól, hogy a lemezt egy speciális (CD-I) lejátszó készülékként lehet lejátszani, amely alkalmas az audio CD-k, és a Photo-CD (optikai lemez) lejátszására is. Az IAV (interaktív videó) technikailag egy lézer-képlemezjátszó és számítógép kombinációja, ahol a képlemezjátszót az okt.-i programnak megfelelően a számítógép vezérlő. Ált. az álló- és mozgófényképes információ a képlemezen, a grafikus, szöveges információ, a tanulásirányítást végző program, az interaktivitást jelenlő feladatok és az értékelés a számítógép mágneslemezén található. A képlemez két oldalán 54 000 színes fénykép, ill. kb. 35 percnyi videofelvétel tárolható. Az IAV rendszer gyakran egy olyan oktatócsomag, amelynek elemei a tankönyv., a számítógépes program és a képlemez.
6. CURRICULUM-DESIGN, OKTATÓ-CSOMAGOK, PROGRAMCSOMAGOK, TANESZKÖZ-, MULTIMÉDIA-, ÉS PEDAGÓGIAI RENDSZEREK

6.1 CÉLKITŰZÉS ÉS KOMPETENCIÁK

A fejezet végére a hallgató képes lesz:

- A tankönyvek, hagyományos és elektronikus taneszközök jellemzésére és osztályozására
- A hagyományos és elektronikus (digitális) taneszközök jellemzésére
- A taneszköz-rendszerek, oktatócsomagok fejlesztési lépései leírására
- A multimédia oktatócsomag és pedagógiai programcsomag fogalmak értelmezésére
- A pedagógiai rendszer fogalmának interpretálására

6.2 TANANYAG

Néhány évtizeddel ezelőtt, a számítógéppel segített oktatás hajnalán és az Internet virradatkor, a kötelező tanterv (később curriculum, még később kerranterv), az irányító, vagy egyszerű tanmenet, majd a tematikus terv, és mindenek előtt, tanáraink személyisége, szakmai és metodikai tudása, szándéka (pl. kísérletező kedve), és a legfontosabb taneszköz, a tankönyv volt a tanítás-tanulás tartalmának legfőbb meghatározója. A humán erőforrások, a tantervi dokumentumok, az infrastruktúra, a hagyományos nyomtatott, szemléltető, demonstrációs és kísérleti eszközök, audiovizuális információhordozók, majd a digitális taneszközök, és minden egyéb komponens pedagógiai rendszerré szervezése mindig is didaktikai elv volt. A didaktikát nem ismerő, praktikus, rendszerszemléletű angol-amerikai curriculum fejlesztés, és az „instructional design and technology”, amelyhez most közelítünk, meghatározó alkotóelemeit már több modell segítségével prezentáltuk a 3. fejezetben.
Az oktatási programok (pedagógiai rendszerek) reprezentánsai, a pedagógiai programcsomagok, mindenütt lényegében taneszköz-rendszerek formájában jelentek meg az iskolai gyakorlatban. Ezek értékelése, ajánlása, jóváhagyása az oktatásért felelős szervek kötelessége lenne, hasonlóan a tankönyvekhez, amely csupán része a rendszernek. Gönczöl Enikő és Vass Vilmos egy 2004-es tanulmányában a tartalomszabályozás súlyponti kérdésének tekinti az oktatási programok fejlesztését: „A szakmai közgondolkodásban most kezd letisztulni az új kategória tartalma. Ennek értelmében az oktatási program egy adott céllal létrejövő tanulási-tanítási folyamat megvalósítását szolgáló teljes eszközzrend szer, amely a különféle taneszközök mellett magában foglalja a folyamat megtervezését, megszervezését és értékelését segítő eszközöket is. Legfőbb funkciója a tanítási-tanulási folyamatok segítése úgy, hogy pontosan leírja a célokhoz vezető utakat és eljárásokat. A tartalom körvonalazása mellett tehát mindig válaszol a „hogyan?” illetve a „miért?” kérdéseire is.”

6.2.1 A tankönyvek, hagyományos és elektronikus taneszközök osztályozása

A következő táblázatok a 3D kísérleti- demonstrációs, audiovizuális, nyomtatott és digitális taneszközök és rendszerek sokféleségét mutatják, egyben jelzik a terminológiai kérdések tisztázatlanságát is.

60 Gönczöl Enikő – Vass Vilmos: Az oktatási programok fejlesztése. Új Pedagógiai Szemle 2004/10
<table>
<thead>
<tr>
<th>HÁROMDIMENZIOS</th>
<th>NYOMTATOTT</th>
<th>OKTATÁSTECHNIKAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrációs eszközök</td>
<td>Tanári segédletek</td>
<td>Anyagok (média)</td>
</tr>
<tr>
<td>természeti tárgyak, gyűjtemények, preparátumok, munkatermékek, kísérleti eszközök, utánpótlás</td>
<td>tanári kézikönyvek, módszertani segédkönyvek, szakkönyvek, feladatgyűjtemények, folyóiratok, tanulókönyvek, műsorjegyzékek, táblák, szövegek és vázlatok, faliképek, falitérképek</td>
<td>információhordozók, audiovizuális anyagok, szoftver</td>
</tr>
<tr>
<td>anyagok</td>
<td>Anyagok (média)</td>
<td>Eszközök-felszerelés</td>
</tr>
<tr>
<td>manipulációs eszközök, kísérleti eszközök, logikai készletek, laboratóriumi készletek, modellenk, applikációs eszközök, mérőeszközök, tanulói mögömb, szerszámok, hangszerek, sportszerek</td>
<td>tankönyvek, munkafüzetek, munkalapok, feladatlapok, nyomtatott programok, atlaszok, szótárok, szöveggyűjtemények, olvasókönyvek, növény- és állatthározói feladatgyűjtemények, kötelező irodalom, folyóiratok, dolgozat-füzetek, mérő és számolóeszközök</td>
<td>audiovizuális eszközök, segéd-eszközök, hardver</td>
</tr>
<tr>
<td>Tanulói kíséreltei és munkaeszközök</td>
<td>Audiovizuális</td>
<td>Audítív</td>
</tr>
<tr>
<td>tankönyvek, munkafüzetek, munkalapok, feladatlapok, nyomtatott programok, atlaszok, szótárok, szöveggyűjtemények, olvasókönyvek, növény- és állatthározói feladatgyűjtemények, kötelező irodalom, folyóiratok, dolgozat-füzetek, mérő és számolóeszközök</td>
<td>hangsositott diasorozat, hangosfilmek, (isokla televízióadás, videofelvételek, képlemezek, gépi programok, oktatócsomagok,</td>
<td>lemezjátszó, magnetofon, rádiókészülék, CD lejátszó, CD-I lejátszó</td>
</tr>
<tr>
<td></td>
<td>Audiovizuális</td>
<td>Vizuális</td>
</tr>
<tr>
<td></td>
<td>hangsositott diasorozat, hangosfilmek, (isokla televízióadás, videofelvételek, képlemezek, gépi programok, oktatócsomagok,</td>
<td>átlátszatlan képek, diafilmek, keretezett diák, tárgyvétet, transzparencs, fotó CD, síkmodellek, némafilmek</td>
</tr>
<tr>
<td></td>
<td>Számítógépes</td>
<td>Számítógépes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mozgóképvetítők TV-készülék és CD-lejátszó, diamagnó, filmvetítő, televízió, képmagnetofon, képmezőjátszó, zárt lánccal televízió, nyelvi labor, oktatógép</td>
</tr>
</tbody>
</table>

| Számítógépes | számítógép regisztráló eszközök, sokszorosító eszközök, multimédia PC |

44. ábra:

A hagyományos, nyomtatott tankönyvek 100 éve még alapvetően rendszerű, összefoglaló művek voltak. Mintegy 50 éve váltak általánossá a tankönyvekben a kérdések és a feladatok, amelyek számos didaktikai funkciót betöltöttek. A tankönyvek, ill. sorozatok gyakran az egyéb, 3D taneszközökkel, audiovizuális és elektronikus információhordozókkal összehangozt, a tanár és a tanulók munkáját egyaránt segítő oktatócsomag, programcsomag, vagy peda-

A kezdeti sikerek után eltűnt programozott tankönyvek nyomába lépő interaktív multimédia oktatóprogram, amely lényegében digitális tankönyv megalapozója, 25 éve még szinte ismeretlen. A számítógéppel segített tanítás és tanulás sokáig független a tankönyvek világától. A hagyományos és digitális tankönyvek és taneszközök integrálódása jelenleg is folyik, több tankönyv generáció együttes jelenlétét érzékelhetjük. Az első generációs digitalizált tartalmak közé sorolható a beszkennt tankönyv, és minden audiovizuális információhordozó, amelyet digitalizáltak. Ennek értéke abban áll, hogy az újabb generációhoz ezek szolgáltatják az építőelemeket. A második generációs digitális tankönyvek alapvető tulajdonsága, hogy eleve digitális író-, és szerkesztőeszközökkel készülnek, vagy átszerkesztik kimondottan számítógépes felhasználásra. A harmadik generációs digitális tankönyvek, taneszközök körébe sorolhatjuk azokat a kimondottan oktatási célzású digitális tartalmakat – akár on-line, akár off-line módon érhetők el – amelyek:

- strukturalt, önálló tananyagként elsajátíthatók;
- módszertani és tanulási útmutatóval vannak ellátva;
- interaktivák, vagyis a résztvevő aktív cselekvése szükséges a tanulási folyamathoz;
- a multimédia elemeket funkcionálisan, beépítve alkalmazzák;
- a ténymag-nyújtás, a gyakorlás, az ellenőrzés és az értékelés folyamatvezérelt.

Az iskolákban használható klasszikus taneszközök és más források, amelyek rendszerbe szervezett alkalmazásáról, a sajátos funkcióik miatt aligha mondhatók, a következők:

<table>
<thead>
<tr>
<th>Szemléltető, demonstrációs eszköz</th>
<th>Tanulókísérleti és munkaeszköz</th>
<th>Vizuális szemléletű eszköz</th>
<th>Tömegmédia, audiovizuális taneszköz</th>
<th>Komplex oktatóprogram, csomag</th>
<th>Számítógéppi program, multimédia</th>
<th>Digitális on-line taneszköz rendszer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Földgömb, éggömb</td>
<td>Applikációs táblai készlet</td>
<td>Falitérkép, Dombortérkép</td>
<td>Tudományos és oktatófilm</td>
<td>Tanulói program, csomag</td>
<td>Oktató, gyakorló, teszt program</td>
<td>Digitális könyvtár</td>
</tr>
</tbody>
</table>
45. ábra:

Jól látható, hogy a korábban használt, bevált audiovizuális taneszközök egy részét valóban kiváltotta, és kiválthatja a számítógép, és számos, minőségileg új taneszköz is született, éppen a pedagógiai rendszerek szolgálatára. Ebből az is következik, hogy a pedagógiai rendszerek fejlesztésének, és az ezzel kapcsolatos tanterv-, tankönyv-, taneszköz-, és képzés akkreditáciának egészében meghatározó jelentőséget kell tulajdonítani, tudván azonban azt is, hogy a tanárok pedagógiai, szakmai, oktatástechnológiai, és szakmetodikai felkészültsége (IKT kompetenciája is) ennél, bizonyára fontosabb.

A digitális taneszközök osztályba sorolása sem könnyíti a dolgot, miként a következő szemelvény is igazolja. Eszerint a tudáskörnyezet tartalmazhat 1) információ-átadó; szöveges, képes, hangos tudástartalmakat bemutató, viszonylag kevés interaktív elemet tartalmazó ismeretátadó ill. ismeretbővítő megoldásokat, 2) információ-feldolgozó; több interaktív elemet tartalmazó, pedagógiai elveken és ezekből eredeztetett módszereken alapuló tudáselsajátítást, kompetenciafejlesztést célzó és/vagy támogató eszközöket, valamint 3)
információ-alkalmazó; egy tudásanyag bevésésére, alkalmazására, ellenőrzésére és értékelésére használható oktatóeszközöket.

I. TUDÁSKÖRNYEZET

1. ISMERET ÁTADÁS:

szöveges, képes, hangos, tudástartalmakat bemutató, viszonylag kevés interaktív elemet tartalmazó, ismeretátadó illető ismeretbővítő megoldások.

1.1 Digitális tudás illetve ismeretforrás: nem kurzus alapú média-tárak, tematikus média gyűjtemények, magyarázó jegyzetek, ábrák, grafikonok, térképek stb., amelyek az adott célcsoport igényeinek illető ismeretátadót is az oktatási helyzetnek megfelelően szükség szerint készíthetők.

1.2 E-könyv: strukturált szöveg, amelyben a hipertext/hipermédia megoldások egy-szerűsítik az információhoz való hozzáférést és azok kezelését. Az eredetihez képest bővebb, esetleg multimédia illusztrációk személyesítése tesszük a tananyagot. Az estelegesen alkalmazott speciális „könyvolvasó” programokban pl. jegyzetelési, könyvjelző és szöveg-kiemelési funkció is adott.

1.3 Digitális szótár: egy vagy többnyelvű, fordítási, etimológiai vagy szinonimasztár funkciójú, képes szögyűjtemény esetleg nyelvtani összefoglalókkal. Internetes kiterjesztés: frissítési, bővítési lehetőség. Illusztrációs lehetőségek: képes (minden szócsikkhez, illetve egy-egy szó-bokorhoz képest rendelő) illetve illusztrált (a bonyolult fogalmakat vagy egyes szócsaládokat ábrán szemléltető) változat.

1.4 Digitális tezaurusz: a digitális szótár speciális megjelenési formája, általában valamilyen komplex rendszer használatához készített segédanyag.

1.5 Digitális lexikon: egy szűkebb szakterületről vagy tágabb ismeretkörből merített szókkal rendszerezett, többféle keresési lehetőséggel ellátott gyűjtemény. Internetes frissítési és bővítési lehetőséggel rendelkezhet, de megkülönböztetett Internetes publikáció formájában is, ilyenkor állandó szerkesztőbizottság dolgozik a meghatározott időközönkénti frissítésen.

2. INFORMÁCIÓ FELDOLGOZÁS:

több interaktív elemet tartalmazó, pedagógiai elveken és ezekből eredeztethető módszereken alapuló tudáselsajátítást, kompetencia fejlesztést célzó és/vagy támogató eszközök.

2.1 Digitális tananyag-egység/objektum, objektum-tár: tantervtől és tanmenettől lényegében független, sokféle pedagógiai környezetben felhasználható, egy kisebb tematikus egység. Kiegészítője: tantárgyi, életkori, módszertani ajánlás. Önmagában és tananyag-elem gyűjteményben is szerepelhet, ez utóbbiban rendszerezve, metaadatokkal kiegészítve.

2.2 Digitális tananyag: pedagógiai elvek alapján, az informatika lehetőségeit az oktatási célok mentén kihasználva felépített oktatási anyag, amely felépülhet a 2.1 elemiből, de önálló, tartalmi, módszertani szempontból zárt egész is alkothat. Alapvető

Fontos részei: oktatási célkitűzések meghatározása, a célkitűzés eléréséhez szükséges taneszköz megjelenítése IKT eszközökkel (pl.: képes, hangos, szöveges magyarázó-kiegészítő részekkel, kifejezések, fogalmak, személyek adatait tartalmazó, a szöveg megfelelő helyeihez kapcsolódó kislexikon vagy szómagyarázat), az egyes részekhez kapcsolódó gyakorló, önellenőrző feladatok a megoldásuk során aktivizálható magyarázó-segítő funkcióval, az alkalmazást segítő komplex feladatok, a tananyag megértését és alkalmazását vizsgáló értékelő-tesztelő rendszer.

A kommunikációs csatornától, adathordozótól függetlenül tartalmazhatnak hivatkozások a témákhoz kapcsolódó web helyekre, bármilyen formájú taneszközre.

2.3 Digitális oktató játék (edutainment): meghatározott célcsoport konkrét fejlesztési feladatait támogató, egy játék szabályrendszerébe illesztett tudásanyag, amely a játszás során ismerhető meg és aktivizálható. Fontos részei: tudásforrás, lexikon, minta-játék a szabályok elsajátítására, segítség az egyes játék-fázisoknál. Előny, ha a karakterek tulajdonságai, a feladatok és a játékterep változhatóak, testre szabhatók. Kiegészítői: pedagógiai elveket bemutató és oktatási használati mintákat adó leírás.

2.4 Pedagógiai munkát támogató tartalmi elemek: Az oktatási program megvalósításához kapcsolódó ötletek, háttér-információk, szükséges anyagok/eszközök listája, időterv, fejlesztési terv, ...

3. INFORMÁCIÓ ALKALMAZÓ:
egy tudásanyag bevésésére, alkalmazására, ellenőrzésére és értékelésére használható oktatóeszközök.

3.1 Digitális feladatbank: bemért, súlyozott, korosztályhoz kötött tematizált feladatok rendszerezett, keresést és leválogatást támogató környezetben közölt gyűjtémény. Tesztelési környezethez kapcsolódhat. (Szükséges kiegészítője: a feladatbank létrehozását és bővítését ismertető, a feladatok típusait közlő, a felhasználáshoz pedagógiai módszereket ajánló leírás. Ebben a tantervi kapcsolatok – a feladatbankban számon kért tudás kapcsolódásai központi és helyi, alap- és kerettantervekhez – is megjeleníthetők.)

II. TÁMOGATÓ KÖRNYEZET ÉS/VAGY RENDSZER

1 Digitális feladatkészítő és gyakorló környezet: a tanár részére kidolgozott, tömegtároló eszközön és on-line egyaránt megjeleníthető szerzői keretrendszer, amely a korszerű pedagógiai elveknek megfelelő feladatok és teszték egyszerű létrehozását támogatja. Lényeges részei: feladatbank, képes, hangos és szöveges tudásforrások – ezek lehetnek a rendszer részei vagy kapcsolódó fejlesztések – és a felhasználást segítő pedagógiai útmutató. Ez nem kapcsolódik közvetlenül tantervhez, felhasználási
lehetőségeit a kapcsolódó tudásforrás és feladatbank tantervi hátttere szabja meg.

| 2 Adaptív képességfelmérő és vizsgakörnyezet: | a tanulók tudását mérő, az egyes tesztelési szakaszok mérési eredmények szerinti nehézségű feladatokat kijelölik, az eredményeket naplózó és feldolgozó komplex környezet. Lehetséges részei pl.: tesztelési felület bemutató programmal és minden feladattípusnál előhívható, a feladat megoldásának megkezdését segítő illetve az eredményt értékelő segítségadással, ami a tanár által a vizsgán kikapcsolható, feladatbank, képes, hangos és szöveges tudásforrások – ezek lehetnek a rendszer részei vagy kapcsolódó fejlesztések –, értékelő rendszer, amely grafikus megjelenítésre is képes (az egyes tanulók, csoportok, osztályok stb. szerinti bontásban) és a felhasználást segítő pedagógiai útmutató. Ez a taneszköz nem kapcsolódik közvetlenül tantervhez, felhasználási lehetőségeit a kapcsolódó tudásforrás és feladatbank tantervi hátttere szabja meg.

| 3 Digitális portfóliókészítő környezet: | a tanulók haladását dokumentáló munkák (kutatási feljegyzések, fogalmazások, prezentációk, képgyűjtemények, megoldott feladatok és tesztek, stb.) összegyűjtését, értékelését és rendszerezését segítő környezet. Ez a taneszköz nem kapcsolódik közvetlenül tantervhez, felhasználnál lehetőségeit a kapcsolódó oktatási program tantervi hátttere szabja meg. Lényeges részei: adatbeviteli, kategorizáló, rendszerező és értékelő lehetőségek, módszertani leírás a portfoliós értékelésről.

| 4 Kommunikációs platform oktatási célra: | egyszerű tudásmegosztó platform, amely támogatja a tanár-tanár, tanár-diák, diák-diák és diák-tanár-külső szakértő kommunikációt, különféle csoportmegosztásban. A platform más digitális taneszközökkel összekapcsolható, kiegészítő módszertani leírás a használat lehetőségeiről. Internetes és intranetes változata is elérhető.

| 5 Képzés-menedzsment rendszer: | A hallgató tevékenységének fókuszba állító informatikai rendszer, melynek célja a hallgató azonosítása, a tartalom hozzá eljuttatása, az ezzel végzett tevékenységek rögzítése, és ennek értékelése. A tanulási tevékenység történhet saját ütemben, ill. kollaboratív módon, melynek színkron és aszinkron formái a tanár-hallgató, hallgató-hallgató relációs kapcsolatait modellzi. Megjelenési és alkalmazási formája feltételezi az on-line kapcsolat meglétét. . Internetes és intranetes változata is elérhető.

| 6 Tartalom-menedzsment rendszer: | informatikai rendszer, melynek fókuszában az oktatási tartalom előállítása, tárolása, adatbázis-funkciókon keresztüli keresése és szűrése, valamint annak a célcsoporthoz közvetlenül, vagy képzés-menedzsment rendszerekhez keresztüli eljuttatása. . Internetes és intranetes változata is elérhető.

| 7 Elektronikus, pedagógiai teljesítmény-támogató rendszer (pedagógiai EPSS) | A „2.4 Pedagógiai munkát támogató tartalmi elemek” pont tartalmát megjelenítő, azt kezelő rendszer.

46. ábra:
6.2.2 Az oktatóprogram, a taneszköz-rendszer és a multimédia oktatócsomag

Történelmi tény, hogy az oktatócsomag, a pedagógiai programcsomag és a pedagógiai rendszer, valamint a számítógépes tanítás-tanulás és az e-learning megalapozója lényegében a programozott tanítási koncepció volt. Az oktatócsomag egyik megtestesítője, különféle taneszközök (pl. audiovizuális, nyomtatott, elektronikus, multimédia stb.) olyan rendszere, amely a pontosan meghatározott tanulási-tanítási célok elérésében a tanár és a tanuló munkáját bizonyítottan segíti, és a teljesítményértékelés és önértékelés lehetőségeit is biztosítja. Az oktatócsomag, Falus Iván és munkatársainak az Országos Oktatástechnikai Központban, 1977-ben végzett kutatására 62 szerint, különbözik az oktatóprogramtól. „Nem kizárólag az egyéni tanulásnak, hanem az osztályban tanári irányítással folyó tanulásnak az eszköze; a tanulói tevékenység szabályozásának, a korrekciónak és az új feladat kijelölésének feladatát gyakran a pedagógus hatáskörébe utalja; nem tulajdonít domináns szerepet egyetlen információhordozónak sem, mindig a legmegfelelőbb, leghatékonyabb információ-hordozót igyekszik felhasználni, bátran sorakoztatva fel a nyomtatott, audiovizuális, demonstrációs, illetve tanulókísérleti eszközök széles skáláját.” A multimédia oktatócsomag koncepció, amely dominánsan az osztályteremben folyó közösségi munkán alapszik, nemzetközi publicitást is kapott. 63

Az oktatócsomag tehát a tananyagot megtestesítő taneszköz-rendszer, eszközegegyüttes, amely kiegészül a tanulási célok rendszerével, teljesítménymérő eszközökkel (tesztekek, gyakorlati feladatokkal stb.), tanári v. tanulói felhasználási útmutatóval aszerint, hogy csoportos (pl. tanórai) v. egyéni feldolgozásra tervezőt. Az oktatócsomag kritériuma a rendszerbe szervezettség, amely több elem révén biztosítja a célok elérését, a megfelelő médiumok kiválasztása,

61 Multimédia csomag, educational package; instructional package; learning package; multimedia package, curricular package
vagyis a tartalom adekvát leképzése, a konkrét céllrendszert és az értékelés eszközeinek megléte, valamint az eredményesség bizonyítása, vagyis a kísérleti kipróbálás, vagy más vizsgálat során, a beválás igazolása.

47. ábra:

Az oktatócsomagok megtervezésének és elkészítésének lépései, műveletei hagyományosan a következőképpen alakultak:

- A téma kiválasztása, a tartalom kijelölése;
- A tantervben meghatározott követelmények transzformálása mérhető célokká;
- Mérőeszközök kidolgozása, belépőteszt, elő- és utóteszt készítése;
- A tananyag elemzése és logikai és didaktikai strukturálása;
- Az adekvát és ajánlott módszerek kiválasztása, meghatározása;
Curriculum-design, oktatócsomagok ...

111

- Az adekvát és ajánlott szervezeti formák meghatározása;
- Az adott témák tanítási időszükségletének meghatározása;
- A szükséges taneszközök és anyagok specifikálása, média-kiválasztás;
- Az alkalmazás megtervezése, tematikus terv, tanári útmutató készítése;
- Az oktatócsomag elemeinek kifejlesztése, szövegezés, szakanyag;
- Forgatókönyv, design, grafika, forgatás, szerkesztés, kísérleti gyártás;
- Véleményeztetés, első kipróbálás és korrekción;
- Iskolai kipróbálás, a teszteredmények feldolgozása;
- Korrekciók, véglegesítés, jóváhagyatás;
- Sorozatgyártás, bevezetés

A moduláris oktatócsomag, mint műfaj jelenleg is valóságos alternatíva. Az Oktatáskutató és Fejlesztő Intézet egyik projekti jének keretében 2008-ban ké szült el, pl. a tizenöt tanítási egységből álló „Globális éghajlatváltozás” című oktatócsomag, amelynek fejlesztési és kipróbálási tapasztalatairól részletes beszámoló is készült. (Havas, P. 2009) Az oktatócsomag felépítése sajátos. A modulok egy tanítási téma leírásai, komplex műfajú szövegek, a tartalmuk egyidejűleg tanmenet, óravázlat, a foglalkozás tőmör forgatókönyve, tanári segéd könyv és kalauz, valamint hivatkozási és technikai jellegű munkadokumentumok keveréke, amely egyidejűleg teszi lehetővé a helyi felkészülést, a tervezést, a pedagógiai alkalmazást és a megvalósítást is.

6.2.3 A pedagógiai rendszer és a programcsomag

szabályozással összefüggő kifejezések, definíciók” tartalmazza azokat a meghatározásokat, amelyek a tartalomfejlesztés általános kereteként biztosíthatják a fejlesztések produktumainak specifikációját. Ez természetesen nem „szabványosítás”, de lehetővé teszi, hogy a fejlesztők egységesen értelmezzék és alkalmazzák az alapfogalmakat. A pedagógiai rendszer definíciója itt a következő:

Oktatási program (pedagógiai rendszer)

A tanítás-tanulás megtervezését-megszervezését segítő, választható dokumentumok, szakmai eszközök rendszerre. Beszélhetünk átfogó, egy vagy több műveltségű területre, tantárgyra kiterjedő programokról. A pedagógiai rendszer jellegzetes komponensei a következők:

1. **Kerettanterv**: tartalmazza a tantárgy céljait, a követelményeket témákhoz, évfolyamokhoz vagy hosszabb ciklusokhoz rendelve, az értékelés elveit, továbbá kijelöli, és az időben elrendező a tananyagot. Ennek változata a programterv.

2. **Pedagógiai koncepció**, amely összefoglalja – esetleg elméletileg is megalapozza – azokat a pedagógiai elveket, amelyeken a program alapul.

3. **Modulleírások**: részletes leírást adnak egy-egy téma feldolgozásának menetéről, mindennel előtt a tanulói tevékenységekről és az ajánlott eszközökről.

4. **Eszközi elemek**, amelyek lehetővé teszik a tervezett tevékenységek megvalósítását:
 - (a) *információhordozók*: tankönyvek, szövegek, képek, filmek, hanghordozók, makettek, CD-k, stb.,
 - (b) *feladathordozók*: munkafüzetek, feladatlapok stb.,
 - (c) *a kettő kombinációi*: szoftverek, stb.

5. **Értékelési eszközök**, amelyek elősegítik a tanulói teljesítmények, a tanulói fejlődés ellenőrzését és értékelését.

6. **Továbbképzési programok**, melyek során felkészítik a pedagógusokat a program alkalmazására.

7. **Támogatás**: tanácsadás és programkarbantartás a fejlesztő műhely részéről.

A szóhasználatot differenciáltabbá tehetjük, ha oktatási programnak az (1), (2), (3) és (4) pontban felsorolt komponenseket nevezzük, programcsomagról akkor beszélünk, ha ezek kiegészülnek az (5) ponttal. A pedagógiai rendszer pedig, a (6) és (7) pontokat is tartalmazza.
A korábbi taneszköz klasszifikációk ismeretében, ebben a „definícióban” az eszközi elemek meghatározása, (amelyek lehetővé teszik a tervezett tevékenységek megvalósítását), a klasszikus taneszközök vonatkozásában meglehetősen egyoldalúnak (makettek, modellek?), a digitális médiákat illetően pedig, elnagyoltanak (CD-k, szoftver?) mondható.

48. ábra: Pedagógiai programcsomag, a NYIK modell

Némi bizonytalanságot okoz, hogy a közoktatásról szóló törvény szinonimaként alkalmazza az oktatási program és a pedagógiai rendszer kifejezéseket. Az oktatócsomagot követő, minőségeleg magasabb szintű pedagógiai programcsomag is gyakran a pedagógiai rendszer objektív reprezentációjaként jelenik meg. „A programcsomag egy adott célal leírja létrejövő tanulási-tanítási folyamat megvalósítását szolgáló komplex taneszközegyüttes, amely az ismeretek közvetítését a készségek, képességek tudatosan megtervezett fejlesztésével kapcsolja össze, és hosszú távon is mozgósítható, alkalmazásképes tudást kínál.”

(Pála, 2006) A különféle tanulói eszközök mellett magában foglalja a folyamat megtervezését, megszervezését és értékelését segítő eszközöket is. Ennek megfelelően az oktatási programcsomag komplex módon tartalmazza mindazokat az elemeket, amelyeket a tanítási-tanulási folyamatban hagyományosan a tantervek, tankönyvek, munkafüzetek, gyűjtemények (szöveg- és feladatgyűjtemények), tanári kézikönyvek és segédletek, valamint a mérési-értékelési eszközök képviselnek. Az oktatási programcsomag elemei a következők:

- **Szakmai koncepció:** a kompetencia meghatározása, leírása, a képességek rendszere és fejlesztésük stratégiája, módszertana.

Pála Károly: Kompetencia alapú oktatási programcsomagok fejlesztése Magyarországon
- **Programtanterv:** célok, követelmények, értékelés elvei, a tananyag kijelölése, időbeli elrendezése, a képességfejlesztés fókuszai és csomópontjai.

- **Tanári eszközök (moduleírások):** részletes leírás egy-egy téma feldolgozásának menetéről, a tanulói tevékenységekről, az ajánlott eszközökkről, módszerekről, tanulásszervezési és értékelési eljárásokról (tartalmazza a feladatok megoldását, szakirodalmi ajánlást stb.).

- **Tanulói eszközök:** információhordozók, feladathordozók és a kettő kombinációi, hagyományos és digitális taneszközök (munkafüzetek, munkatankönyvek, digitális szimulációk és animációk).

- **Értékelési eszközök:** a diagnosztikus bemeneti és követő mérés eszközrendszere.

- **Továbbképzési programok:** akkreditált pedagógus-továbbképzési programok a programcsomagok bevezetésére, alkalmazására, adaptálására.

- **Támogató rendszer:** tanácsadás, mentorálás, programkarbantartás a fejlesztőműhely részéről.

A korszerű programcsomag is *moduláris felépítésű,* és lépésről lépésre kialakuló kínálatával időben átfogja majd az 1–12. évfolyamok teljes tanulási időszakát.

Egy-egy pedagógiai rendszer olyan komplex szabályozó eszközegyüttes, amely tartalmazza a kerettantervet, a hozzá illeszkedő ajánlott tankönyv- és taneszközcslálatot és a mérés és értékelés eszközeit a pedagógus kezébe adató mérőeszközökkel, feladatlapokkal. A pedagógiai rendszer ezeken kívül magában
foglalja a továbbképzési és a pedagógiai szolgáltatás rendszerét.” (Környei, 1998.)

Pedagógiai rendszere lehet tehát: (1) egy tantárgyon belüli témának; (2) egy egész tantárgynak; (3) egy műveltségi területnek, azaz több, egymással összehangolt és összetartozó tantárgynak; (4) egy adott iskolának, azaz valamennyi évfolyamra és tantárgyra vonatkozhat; (5) módszertani fejlesztésnek, amely során a cél a tanulás-tanítás módszerbéli innovációjának átfogó és kohe- rens fejlesztése (pl. projektekre épülő tanulás).

A hazai pedagógiai fejlesztési gyakorlatban valamennyi típus fellelhető, és ahány típus annyi tankönyv, taneszköz-rendszer, vagyis programcsomag. A taneszközök és taneszköz-rendszerek sokfélesége számos terminológiai kérdést is felvet. A pedagógiai rendszer fejleszti folyamatát jellemzi és minősíti, hogy a gyakorlatban történő kipróbálás (a tanulhatóság-taníthatóság vizsgálata) a fej- leszts intégráns részévé, azaz a minőségbiztosítás egyik pillérévé válik-e. Nyil- vánvaló az is, hogy pedagógiai rendszerek programcsomagjait, taneszköz- rendszereit – akár hagyományos, akár digitális, akár normálisan komplex, olva- só-szemléletű-kísérletező „multimédia” az – a jelenlegi, rendszerzetlélet nélküli, a tankönyvektől elképzelhetetlen szolgáltatásokat elváró kritériumok, jóváhagyási szisztema és „értékelőlapok” segítségével adequat módon minősí- teni nem lehet. A rendszert, csak rendszerként lehet vizsgálni.

6.3 ÖSSZEFOGLALÁS

A digitális taneszközök osztályba sorolása sem könnyíti a dolgot, miként a következő szemelvénny is igazolja. Eszerint a tudáskörnyezet tartalmazhat 1)

67 Új Pedagógiai Szemle 1998 szeptember „Nem kell előlről kezdeni mindent” –Interjú Környei László közoktatási helyettes államtitkárral, készítette Schüttler Tamás
információ-átadó; szöveges, képes, hangos tudástartalmakat bemutató, viszonylag kevés interaktív elemet tartalmazó ismeretátadó ill. ismeretbővítő megoldásokat, 2) információ-feldolgozó; több interaktív elemet tartalmazó, pedagógiai elveken és ezekből eredeztetett módszereken alapuló tudáselsajátítást, kompetenciafejlesztést célzó és/vagy támogató eszközöket, valamint 3) információ-alkalmazó; egy tudásanyag bevétele és, alkalmazásra, ellenőrzésre és értékelésére használható oktatóeszközöket.

Az oktatócsomag az oktatóprogramok egyik megtestesítője, különféle taneszközök (pl. audiovizuális, nyomtatott, elektronikus, multimédia stb.) olyan rendszere, amely a pontosan meghatározott tanulási-tanítási célok elérése méretében a tanár és a tanulók munkáját bizonyítottan segíti, és a teljesítményértékelés és önértékelés lehetőségeit is biztosítja. Az oktatócsomag a tananyagot megtestesítő taneszköz-rendszerek, eszköz-együttes, amely kiegészül a tanulási célok rendszerével, teljesítménymérő eszközökkel (tesztekkel, gyakorlati feladatokkal stb.), tanári v. tanulói felhasználási útmutatóval aszerint, hogy csoportos (pl. tanórai) v. egyéni feldolgozásra terveztek. Az oktatócsomag kritériuma a rendszerbe szervezettség, amely több elem révén biztosítja a célok elérését, a megfelelő médiumok kiválasztása, vagyis a tartalom adekvát leképzése, a konkrét célrendszersor és az értékelés eszközeinek megléte, valamint az eredményesség bizonyítása, vagyis a kísérleti kipróbálás, vagy más vizsgálat során, a beválás igazolása.

A programcsomag egy adott céllal létrejövő tanulási-tanítási folyamat megvalósítását szolgáló komplex taneszköz-együttes, amely az ismeretekek közvetítését a késéségek, képességek tudatosan megtervezett fejlesztésével kapcsolja össze, és hosszú távon is mozgósítható, alkalmazásépítő tudást kínál. Egy-egy pedagógiai rendszer olyan komplex szabályozó eszközegyüttes, amely tartalmazza a kerettantervet, a hozzá illeszkedő ajánlott tankönyv- és taneszköz családot és a mérés és értékelés eszközeit a pedagógus kezébe adható mérőeszközökkel, feladatlapokkal. A pedagógiai rendszer ezeken kívül magában foglalja a továbbképzési és a pedagógiai szolgáltatás rendszerét.

6.4 Önellenőrző kérdések

1. Milyen szempontok alapján osztályozhatók és jellemezhetők a taneszközök?
2. Melyek a taneszköz-rendszerek, oktatócsomagok tervezési-fejlesztési lépései?
3. Határozza meg a multimédia oktatócsomag és pedagógiai programcsomag fogalmát!
4. Ismertesse az elektronikus tanulási környezetben alkalmazott tanesz-közöket!

5. Mit nevezünk pedagógiai rendszernek?

http://www.educatio.hu/download/tamop_311/2piller_tanulmanyok/05_pedagogiai_rendszer_fejlesztesi_munkafolyamat/5_TANU_1.PDF

http://okt.ektf.hu/data/nadasia/file/tananyag/oktataselmelet/1_tananyag5.html

49. ábra:
7. OKTATÁSTECHNOLÓGIAI FORRÁSOK, ADATBÁZISOK ÉS E-SZOLGÁLTATÁSOK

7.1 CÉLKITŰZÉS ÉS KOMPETENCIÁK

A fejezet végére a hallgató képes lesz:

- az oktatást segítő adatbázis és a tudásbázis fogalmának értelmezésére, megkülönböztetésére;
- a Sulinet Digitális Tudásbázis, a magyar oktatási rendszer szereplői számára ingyenesen használható tartalomkezelő keretrendszer használatára;
- a Calderoni on-line Elektronikus tanulási Forráskezelő Rendszer szolgáltatásainak interpretálására;
- a Magyar Elektronikus Taneszköz Adatbázis használatára, a készségfejlesztő programok értékelésére;
- a pedagógusoknak készített Interaktív oktatástechnikai portál főbb szolgáltatásainak bemutatása

7.2 TANANYAG

Az oktatást segítő digitális adatbázis, illetve annak egy sajátos formátuma, a tudásbázis célját és funkcióját tekintve taneszköz, helyesebben rendszer. Fontos kérdés, hogy melyek a legismertebb „tudásbázis”, a tankönyv mellett élő régi és új taneszközök? Elvileg a következő táblázat megmutatja, bár – a számítógép, az Internet, és általában a digitalizáció következtében – több eszköz már csak a szertárak mélyén létezik. A történeti kategóriák didaktikai funkciót is jeleznek, egyes taneszközök virtuális, vagy digitális formában is színre léptek. Mint korábban már tárgyaltuk, a taneszközök körébe, a tankönyvek mellett, az oktatási gyakorlatot meghatározó dokumentumok szerint, formailag is azonosíthatóan, ma már számítógépes oktatóprogramok, interaktív multimédiás források, digitális tudásbázisok, e-learning rendszerek tartoznak. Az eszközök

teljes körű számbavétele problémás, a tartalom- és módszerhordozó taneszközök taxonómiai rendezése még várat magára. A klasszikus demonstrációs és audiovizuális szemléltető taneszközök értékelése és beillesztése a tanítás-tanulás folyamatába viszonylag egyszerű, elsősorban azért, mert az alkalmazást a tanár irányítja. A tevékenykedetető, tanulókisérleti eszközök, tanulási csomagok mellett, az önálló tanulást segítő információhordozók tipikus és általános példái a korábban használt programozott tankönyvek, oktatógéppel, számítógéppel működtetett programok újabb változatai, a multimédia oktatóprogramok, a hálózaton elérhető digitális tananyagok, e-learning rendszerek. taneszköz, oktatómédia-kiválasztás és az értékelés az új, elektronikus és komplex taneszközök színrelépésével azért kap nagyobb jelentőséget, mert a tanulásirányítási funkció időlegesen nem a tanár, hanem a program ill. a tanuló kompetenciája. Ez utóbbiak didaktikai potenciálja jelenleg is kutatás tárgya. Konkrét, tantárgy-specifikus, ill. készségfejlesztő taneszköz-értékelési és minősítési program és munka esetleges felvállalására gondolva, utalnunk kell az oktatástechnológiai kutatások korábbi eredményeire, amelyek szerint:

1. A tankönyveket kivéve, egyik hagyományos, audiovizuális, elektronikus médiumnak sincs általánban kitüntetett szerepe az eredményes és hatékony tanítás-tanulás megvalósulásában. (Nem minden új eszköz alkalmas minden célnál, egy célra több eszköz is használható, eltérő hatékonysággal.)

2. Mindegyik taneszköz speciális információközlési, képességfejlesztési lehetőségekkel rendelkezik és sajátos tanulási környezetet igényel és telemint. (A lényegi médium-jellemzők mellett jelentős szerepük van a technikai médium-jellemzőknek is.)

3. Az információfeldolgozás eredményessége nagymértékben függ a tananyag tartalmának, struktúrájának és a taneszköz jellemzőinek az összehangoltságától. (Nem képezhető le adekvát módon minden struktúra minden információhordozóra.)

4. Az eredményes taneszköz használatot meghatározza a tanulók egyéni és életkorai sajátosságainak, képességeinek különösen a kognitív szintjének figyelembe vétele. (A változatos szemléltetés illetve a részletezett-ség, ismételhetőség differenciálási lehetőség.)

5. A tanárok által determinált felhasználás módszere, az egyes taneszközök és a teljes folyamat tervezettsége az eredményesség szempontjából kardinális pont. (A rendszerszemlélet érvényesítve a fejlesztés során optimálisan kidolgozott, bizonyítottan hatékony taneszköz az alkalmazás során lehet eredménytelenül használni.)
A taneszközökben, taneszköz-rendszerekben, más néven ismerethordókban tárgyiasult „információ”, és az adattárakba, adat-, és tudásvételhez rejtett isten, valamint a tanulók által birtokolt tudás, ismeret, kompetencia, eszköz- és tartalomtudás teljes fogalomban és kapcsolatrendszere még sok kérdést vet fel. Az viszont tény, hogy a pedagógiai gyakorlat segítsére gombamód szaporodnak a tanári munkához közvetlenül kapcsolódó „adatbázisok”, illetve a tanulót segítő „tudásbázisok”. Az is megesik, hogy a két rendszer integrációjaként sajátos, új eszköz születik. Ilyen, pl. a Sulinet Digitális Tudásvétel, és ilyen a META Magyar Elektronikus Taneszköz Adatbázis is. Egyre több, tematikus digitális könyvtári gyűjtemény a tudástár, tudásvétel nevet viseli. Közismert az Arcanum Digitális Tudásvétel, de számos más szakmai portálon is megjelennek speciális állományok, pl. a Magyar Csillagászati Egyesület által kialakított és fenntartott Csillagászati Tudásvétel. A példákat tovább sorolhatnánk, kiemelkedő kezdeményezés pl., a magyar Kempelen Farkas Digitális Tankönyvtár (Tankönyvtár, KFDT) az Educatio Kht. 2005-ben elindított, jelenleg több ezer elektronikus tankönyvet, folyóiratokat, videókat tartalmazó ingyenes szolgáltatása. Tankönyvtár alapja az akkori Oktatási Minisztérium pályázatkezelő intézményei által 2004-ben és 2005-ben, a Felsőoktatási Tankönyv- és Szakkönyvpályázat keretében támogatott könyvek elektronikus változatai. A jelenlegi, új honlap keresőjében tudományterületekre osztva lehet böngészni a cikkek, tanulmányok, oktatási segédanyagok között, így a látogatók érdeklődés területüknek megfelelően figyelemmel kísérelhetik az adott témakörben létrejövő új, digitalizált tartalmakat. A tárgyszavak és a DC metaadatok segítségével könnyen megállapítható, hogy a keresési találatok közül melyik a legmegfelelőbb.

Sajátos tudásvétel a felsőoktatás és kutatás közösségeinek video megosztó portálja a VIDEOTÓRIUM, az egyetemeken és konferenciákon elhangzott tudományos előadások mellett az intézményekben készített felvételeket is tartalmaz. Regisztrált felhasználók az előadásokat értékelhetik.
A kompetenciatajékonyság alapú oktatás a terjedésével és a nem szakrendszerű oktatás kötelező bevezetésével folyamatosan egyre szélesebb igény merül fel a digitális tananyagok iránt. A pedagógusok elsősorban nem a komplex szoftvereket keresik az oktatáshoz, hanem a szabadon letölthető digitális tananyagokat, anyagokat, amelyekkel a tanítási óráik egy részét színesíthetik, amelyeket szabadon alakíthatnak egyéni és tanulói igényeikhez, amelyeket jól tudnak alkalmazni a csoportmunkához és a differenciáláshoz.

„Az elektronikus tananyagokat azért nőtt meg az érdeklődés, mert az elektronikus formában tárolt információhoz könnyebben és gyorsabban lehet hozzáférni, mint a papír alapúhoz. Egyszerűbben és gyorsabban lehet az elektronikus információkkal különböző műveleteket végezni, mint a hagyományos tankönyvek és munkafüzetek feladataival. Végezetül: ma már vannak olyan információk, amelyek csak elektronikus formában hozzáférhetők. Persze ez nem jelenti azt, hogy a többi tudástárra nincs szükség. Ezután is szükség van az elménkre mint belső tudástárra: meg kell tanulnunk például bizonyos ismereteket, hogy fejből tudjuk őket, hiszen nem fordulhatunk mindig a külső tudástárrakhoz. Ezután is szükségünk van a könyvekre mint a hagyományos külső tudástárra, de ezeket a tudástáarakat ki kell egészítenünk a külső elektronikus tudástárrakkal, az infokommunikációs eszközökkel, mert csak ezek alapos ismeretével és megfelelő használatával tud boldogulni a XXI. század embere a világban. A tudástárak bővülését a NAT legitimálja, hiszen a digitális kompetencia fejlesztését az iskolai nevelés és oktatás alapvető céljai között jelöli meg: „A
digitális kompetencia felöleli az információs társadalom technológiáinak (Information Society Technology, a továbbiakban: IST) magabiztos és kritikus használatát a munka, a kommunikáció és a szabadidő terén. Ez a következő készségeken, tevékenységeken alapul: információ felismerése, visszakeresése, értékelése, tárolása, előállítása, bemutatása és cseréje, továbbá kommunikáció és hálózati együttműködés az Interneten keresztül.” A pedagógusok, hogy a digitális kompetencia kapcsán eleget tudjanak tenni mind a NAT előírásainak, mind a társadalom elvárásainak, a leggyakrabban a következő adatbázisokhoz fordulhatnak segítségéért:

- Magyar Elektronikus Taneszköz Adatbázis (META), http://www.tanszertar.hu
- Sulinet Digitális Tudásbázis (SDT), http://www.sulinovadatbank.hu
- Calderoni Elektronikus Forráskezelő és Kompetenciafejlesztő Program-adatbázis

Mielőtt néhány tipikus adatbázist bemutatnánk, érdemes áttekinteni az adatbázisok „taxonómiáját”. A legtöbb könyvtári kézikönyvben az adatbázisokat a szolgáltatott információk szempontjából a Carlos A. Cuadra által kialakított taxonómia alapján szokták csoportosítani. Az adatbázisok típusai eszerint a következők: Referensz adatbázisok, ezen belül bibliográfiai (például a MEDLINE, vagy nálunk a PRESSDOC adatbázisa, vagy az ERIC) és forrástájékoztató (pl. név- és címtáarak, cégkatalógusok, telefonkönyvek, termék katalógusok, pl. a META) adatbázisok.

7.2.1 A Magyar Elektronikus Taneszköz Adatbázis

A Magyar Elektronikus Taneszköz Adatbázisban regisztrált, adatközlő cégek száma 75, és közel 7 000 taneszközt tartalmaz. Az 1992-ben alapított, közel 120
Oktatástechnológiai források, adatbázisok és e-szolgáltatások

Az Oktatáskutató és Fejlesztő Intézet Innovációs Központjában – az NFT HEFOP 3.1. programon belül – nagyon sok készség- és kompetenciafejlesztő feladatblokkot dolgoztak ki, amelyek beépültek az adatbázisba. A Magyar Elektronikus Taneszköz Adatbázis honlapján a következő tantárgyakhoz találunk készség- és kompetenciafejlesztő feladatokat: angol, biológia, fizika, földrajz, francia, informatika, kémia, magyar, matematika, német, történelem, rajz és vizuális kultúra. A lekérdezési struktúra mintája:

<table>
<thead>
<tr>
<th>Fejlesztő feladatok</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALAPKÉSZSÉGEK</td>
</tr>
<tr>
<td>MAGYAR NYELV ÉS MATEMATIKA</td>
</tr>
<tr>
<td>TÖRTÉNELEM</td>
</tr>
</tbody>
</table>

7. ÉVFOLYAM

<table>
<thead>
<tr>
<th>TANÁRI KÉZIKÖNYV</th>
<th>TANULUL PÉLDÁNY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. RÉSZ: Polgári átalakulás kora</td>
<td>I. RÉSZ: Polgári átalakulás kora</td>
</tr>
<tr>
<td>II. RÉSZ: A polgárosodás kezdetei Magyarországon</td>
<td>II. RÉSZ: A polgárosodás kezdetei Magyarországon</td>
</tr>
<tr>
<td>III. RÉSZ: Nemzetállam kora</td>
<td>III. RÉSZ: Nemzetállam kora</td>
</tr>
<tr>
<td>IV. RÉSZ: Dualizmus kora</td>
<td>IV. RÉSZ: Dualizmus kora</td>
</tr>
<tr>
<td>V. RÉSZ: Az I. világháború</td>
<td>V. RÉSZ: Az I. világháború</td>
</tr>
<tr>
<td>I. AMERIKAIUL AMERIKÁRÖL</td>
<td>I. AMERIKAIUL AMERIKÁRÖL</td>
</tr>
</tbody>
</table>
A fejlesztő feladatok közös kompetenciatartománya: kommunikáció, problémamegoldás, modellalkotás, tájékozódás térbén és időben, társas kompetenciák, érzelmi intelligencia.

A kommunikáció magában foglalja a legfontosabb nyelvhasználati formákat és tevékenységeket (beszédértés, beszéd, olvasás, írás), de tágabban azt a tanulási, feladatmegoldási, értékelési klímát is, amelyben a feladatokat alkalmazzák, és az értékelő visszajelzéseket megfogalmazzák (pl. szövegalkotás, angol nyelv, német nyelv, biológia, történelem).

A csoportmunka hatékonyan támogatja a társas kommunikációt, valamint a szociális kompetenciák alakulását. A feladatmegoldáshoz szükséges adatok, a szöveges és a vizuális információk feldolgozása átfogóan fejleszti az olvasás, szövegértés képességét (pl. a vizuális jelrendszer transzformációja a matematikában, különböző források értelmezése a történelemben, verbális információk vizuális megjelenítése a földrajzban).

A problémamegoldás és a modellalkotás összetett kognitív képességek, amelyek az egyes területek sajátosságainak megfelelően játszanak szerepet a feladatsorokban. A feladatok tehát a rutinszerűen is alkalmazható gondolkodási sémák helyett előnyben részesíti a problémamegoldás helyzetét és gondolkodási műveleteit (pl. matematika fizika, biológia, földrajz). A kifejezetten e képességterületek fejlesztésére hivatott feladatok teret adnak az összefüggésekben való kreatív gondolkodási megértésnek (pl. szövegalkotás, rajz és vizuális kultúra, történelem). Feltevésünk, hogy a tanulási kudarccal küszködő tanulók is eređményesebben fejleszthetők, ha a gondolkodási képességek szempontjából heterogén csoportban fogyhatnak hozzá az összetettebb gondolkodási műveleteket is igénylő, úgymond nehezebb feladatokhoz, amelyek addig számukra elérhetetlenebbek tűntenk.

A tájékozódás térbén és időben olyan általános és alapvető azonosítási képesség, amelynek „minősége” szinte valamennyi tanulói feladatmegoldásban, produktumban feltárható, legyen szó térképovlasáról, egy mese értelmezéséről, idegen nyelvi szöveg megértéséről, egy történeti forrás adatainak vagy egy gótikus katedrális tájolásának azonosításáról.

A társas kompetenciák – pl. együttműködés heterogén csoportban, mások megértése, kapcsolatépítés, kapcsolat fenntartása, vitastílus alakítása, érvelési
módszerek alkalmazása, konfliktuskezelés, önérvényesítés és empátia, szolidaritás – e projekt egyik kiemelt területeként a feladatmegoldási tevékenységek változatossága révén fejleszthető.

Az **érzelmi intelligencia** az önmagunkra vonatkozó személyes és a másokra irányuló odafigyelés képességéből tevődik össze. Alapvető személyes kompetenciák: éntudatosság, önszabályozás, motiváltság; társas kompetenciák: mások iránti érzékenység (empátia), mások befolyásolásának képessége, együttműködés, csapatcsizmája, érzelmekek kezelése. A hagyományos értelemben vett, legalábbis részben öröklött adottságokon alapuló értelmi intelligenciával szemben az érzelmi intelligencia összetevői bármely életkorban fejleszthetők a rutinná vált gondolkodási és cselekvési sémák alternatíváiként. Arról, hogy a tanulási nehézségek, illetve a tanulási eredményesség hogyan függ össze az érzelmi intelligenciával, nem átlánk rendelkezésünkre adatok a hazai diákos köréből, de feltevésünk szerint a feladatkészítésre, a megoldási és értékelési helyzetekre e szempontból (is) figyelő, erre a dimenzióra is reflektáló feladatkészítő és tanári magatartás képes e meghatározó emberi adottság növelésére.

A feladatfejlesztői tevékenység, illetve a feladatállomány szakmai koherenciáját más eszközökkel is biztosíthatjuk, például a projektben belüli kapcsolatokkal, valamint a fent említettekben túl más képességek fejlesztésével. Így visszatérő feladatelem az induktív gondolkodás, a konstrukció, az információkezelés, a lényegkiemelés, a logikai készségek alkalmazása, az ok-okozati viszonyok megértése, sőt feltárása, létrehozása. A konstrukció például nem kizárólag intellektuális tevékenység, hanem esetenként kompozíció, tárgy, alkotás, építmény stb. létrehozása (pl. fizika, történelem, társadalom és vizuális kultúra). Úgyanúgy természetesen nehéz, hogy e „képességek” nem deklarációs, mert jelszóként jelentenek meg, hanem minden egyes terület konkrétizálja azokat a maga tartalmaival és tevékenységeivel.

A **Magyar Elektronikus Tanacsok Adatbázis készítményfejlesztő eszköztárak használata** Bács János közlése alapján ismertetjük, a **Magyar nyelv és irodalom példáján**. Egy-egy tantárgy konkrét anyagához a következőképpen juthatunk hozzá. Behívjuk a honlapot: http://www.tanszertar.hu, amelynek nyitóoldalán vastag betűkkel kiemelve megtaláljuk a tantárgyak felsorolását, majd ráklikkelünk a kiválasztott tantárgy nevére, ezzel megjelenik az adott tantárgy mappája. Ha rákattintunk a mappára, előtűnnek a mappában található könyvtárak, a könyvtárakban pedig a szabadon letölthető, tényleges tartalmat találjuk. Ha például ráklikkelünk a **Magyar tantárgynévre**, ezzel megjelenik a magyar mappa, akkor a mappában a **Szövegalkotás** és a **Szövegértés** könyvtárakat találjuk. A **Szövegalkotás** könyvtár a 8. és a 10. évfolyam feladatait tartalmazza. Mind a 8., mind a 10. osztályos **Szövegalkotás** könyvtár két további könyvtárból áll: **Fejlesztő feladatok. Tanári kézikönyv. Szövegalkotás. 8. évfolyam**, ..
illetve 10. évfolyam; Fejlesztő feladatok. Tanulói kézikönyv. Szövegalkotás. 8. évfolyam, illetve 10 évfolyam.

A Tanári kézikönyv bevezetője tisztázza a szövegértés tanításának céljait, a feladatait, a szövegértés tanításának alapjait. Magában foglalja továbbá a feladatállomány szerkezetének leírását, a területi példányok használatának lehetőségeit, az osztálytermi munkára vonatkozó metodikai javaslatokat, a fejlesztő feladatok értékelésének elveit, valamint a teljes megoldókulcsot.

A többi tantárgyban is a magyarázó hasonló az adatbázis felépítése. Nagy erénye a feladatbanknak, hogy könnyen elérhető, viszonylag nagy mennyiségű anyagot tartalmaz és bárki számára ingyen hozzáférhető.

Az ilyen honlapok a kompetenciaalapú oktatás nélkülözhetetlen segédeszközök. Bátran ajánlhatjuk tanároknak, tanítóknak, hallgatóknak és minden olyan embernek, aki érdeklődik a digitális vagy digitalizálható tananyagok vagy az oktatáskutatás iránt.

A META project eredménye nem csupán egy taneszköz kataszter és egy komplex tankönyv/taneszköz etalontár, hanem egy iskolai és tantárgycentrikus információs rendszer. A projekt során keletkezett szolgáltatások közül a www.tanszertar.hu oldalon található Magyar Elektronikus Tanszköz Adatbázis kiemelkedő fontosságú szakinformációs portál, amely szolgáltatja Könyv és Nevelés c. negyedéves folyóiratunk elektronikus verzióját is, és ahonnan további 90 taneszköz-információs honlap érhető el.

7.2.2 A Calderoni on-line Elektronikus tanulási Forráskezelő Rendszer

Calderoni Program, amelynek célja a Calderoni Elektronikus Tanulási Forráskelő Rendszer és Kompetenciafejlesztő Programadatbázis létrehozása volt.

Az adatbázis alapját „A felsőoktatás szerkezeti és tartalmi fejlesztése – HEFOP 3.3.1”, és „A kompetencia-alapú tanítási-tanulási programok elterjesztése a pedagógus-képzésben – HEFOP 3.3.2” intézkedések keretében, a felsőoktatási intézmények képzési kínálatának bővítése és fejlesztése, a felsőfokú végzettséggel rendelkezők át- és továbbképzése, a felsőoktatási intézmények minőségközpontú működésének támogatása, ill. a pedagógiai kompetenciafejlesztés céljából létrehozott elektronikus dokumentumok képezik. A Calderoni Program különösen jelentőségét az adja, hogy az említett intézkedések fő céljain túlmutatva, szélesebb célcsoport részére teszi hozzáférhetővé az ott létrejött egyetemi, főiskolai taneszközöket, elektronikus tananyagokat és módszertani ajánlásokat.

3.3.2 „Kompetencia-alapú tanítási-tanulási programok elterjesztése a pedagógus-képzésben” c. projektben résztvevő 5 pedagógusképző intézmény ill. konzorcium kompetencia alapú pedagógusképzési programjainak, módszereinek adatbázisba gyűjtése, az elektronikus programcsomagok, e-learning kurzusok hozzáférhetővé tétele. Ennek érdekében a Calderoni program a következő ki-emelt feladatokra koncentrált:

- A felsőoktatás igényeihez illeszkedő, felhasználó-központú, korszerű elektronikus keretrendszer megtervezése, specifikálása és ehhez kapcsolódó szoftverfejlesztés.
- A minőségbiztosítás elemeinek fejlesztése összhangban a kompetencia alapú képzés kialakítására vonatkozó programok kidolgozásával.
- Az oktatási programcsomagok alkalmazásához szükséges oktatástechnológiai és szakmetodikai ismeretek és készségek beépítése a tanárképzési programokba.
- A pedagógiai mérési-értékelési rendszert, az értékelési kultúrát megújító programok elérhetőségének biztosítása, integrálása a tanárképzési tematikákba.
- Az elektronikus tanulási és más forráskezelési kultúra iránti érzékenység, különböző szervezeti; közösségi és egyéni hasznosítási algoritmusok kidolgozása.
- Az előző pontokhoz kapcsolódó Internet alapú, szabadon elérhető program, módszer, tananyag és taneszköz, adatbázis, központi etalonta létrehozása, működtetése, a kurzusok egységes platformon történő elérésének megalapozása.

51. ábra:

A kor követelményeinek megfelelő, korszerű internetes forráskezelő felület, különböző fejlődésű on-line szolgáltatásokat foglalhat magába. A program célcsoportjai eltérő igényekkel léphetnek fel. A célcsoport részesülése a projekt eredményeiből a rendszer hozzáférési szintjei, és a megegyezésen alapuló jogosultságok szerint differenciált:

- A konzorciumok által végzett tartalomfejlesztésben közvetlenül részt vevők jogosultak az anyagok módosítására, frissítésére. A Calderoni referensek operatív feladatuk keretében jogosultak az adatbázis integrációjának rendszeres felügyeletére.

- A képzési folyamatokat közvetlenül irányító oktatók, képzés-szervezők, akik a tartalomfejlesztésben nem vettek részt, jogosultak a létrehozott anyagokba való korláttal betekintésre, és azok változatlan formában történő felhasználására.

- A képzésben részt vevő, vagy arra jelentkező hallgatók jogosultak a rendszerben hozzáférhető tananyagok és tanulást segítő anyagok megismerésére, és felhasználni ezeket személyes tanulási programjuk és pályaorientációjuk kialakítása során.

- A közoktatási intézmények tanulói jogosultak a rendszerben hozzáférhető tananyagok és tanulást segítő anyagok megismerésére, és felhasználni ezeket személyes tanulási programjuk és pályaorientációjuk kialakítása során.
A közvetett célcsoporthoz belül a hátrányos helyzetű, a roma, illetve a sajátos nevelési igényű tanulók a kompetencia-alapú pedagógusképzésben végzett pedagógusok szakmai – pedagógiai munkája révén részesülnek a projekt eredményeiből.

Világosan kell látni, hogy a WEB-2 koncepció keretében épülő Calderoni rendszer célja – az anyagok elérhetőségének biztosításán túl – a kereshetőség, a bemutatás és hozzáférés-menendezelt szolgáltatások, a megosztási és közösségi felhasználás elősegítése.

<table>
<thead>
<tr>
<th>CÉLCSOPORT</th>
<th>KÖZVETLEN</th>
<th>KÖZVETETT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEJELESTŐ</td>
<td>A produktumokat létrehozó intézmények oktatói és kutatói</td>
<td>Nevelési, oktatási és képzési intézmények fenntartói; önkormányzati oktatási vezetők és munkatársak</td>
</tr>
<tr>
<td></td>
<td>A Calderoni referensi képzésben részt vevők, C rendszerfejlesztők</td>
<td>Oktatók, szakértők, szaktanácsadók és szolgáltatók, C könyvtár-informatikusok</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Az Oktatási és Kulturális Minisztérium és háttérintézményeinek munkatársai</td>
</tr>
<tr>
<td>FELHASZNÁLÓ</td>
<td>A konzorciumokban részt vevő oktatási intézmények hallgatói</td>
<td>A köz-, és szakoktatásban részesülő diákok személyes tanulási programjuk és pályaorientációjuk kialakítása céljából</td>
</tr>
<tr>
<td></td>
<td>A kompetencia alapú pedagógusképzésbe belépő hallgatók</td>
<td>Az SNI tanulók a kompetencia-alapú pedagógusképzésben végzett pedagógusok munkája révén</td>
</tr>
</tbody>
</table>

A Calderoni Adatbázis kereső, és tárgyszó rendszerének kialakításáról a következőkben szólunk. A feldolgozásra kerülő anyag terjedelme és tartalmi sokszínűsége komoly feladatot jelentett a tartalmi és formai feltárás számára. Ebben az esetben is beigazolódni látszott, hogy egyik meglévő rendszert sem lehet érintetlenül ráhúzni a másikra. Mivel nem könyvtári adatbázis készült, így tartalmi szempontból esetenként mélyebb és más típusú feltárást igényeltek az egyes dokumentumok, hiszen az oktatók akár egy speciális részterület oktatásához, annak kidolgozására, vagy módszertani segédletként is felhasználhatják.

Az osztályozási rendszer a szakmának készült, ezért két fontos jellemzője van; sokkal részletesebb esetenként, mint egy könyvtári rendszer, ill. mindig lesz olyan oktató, kutató, aki szerint nem elég részletes, mert az általa művelt terület specifikumait nem tárja fel teljes mélységében az osztályozási rendszer. A rendszer azonban nyitott, következképpen megadja a lehetőséget arra,

52. ábra: A rendszer lelke: a Calderoni middleware

Az osztályozási rendszer elemeit három alapvető szempont szerint állítottuk össze, ezek a tartalom, a forma, és a lelőhely. A feltárás során felhasznált osztályozási és más feltáró elemek segítségével az egyes objektumok sokoldalú visszakeresése válik lehetővé. A következő elemek kerültek feldolgozásra:
A feltáró munka során átfogó képet kaptunk a HEFOP 3.3.1. és 3.3.2 pályázatok keretében készült anyagok széles spektrumáról, és a munkánk során keletkezett tapasztalatok véleményünk szerint jól hasznosíthatóak lesznek az adatbázis későbbi fejlesztéséhez, továbbépítéséhez. A projektek során létrehozott anyagok jellemzőit illetően elsőként a sokoldalú tartalmat kell megemlíteni, ugyanis a feltáró munka egyik nehézsége ebben rejlett. Az elkészült anyagok tartalma magába foglalja a különböző tudományoknak csaknem minden területét, ezért a szakterületenkénti nagy mélységű tartalmi feltárás olyan szakembereket kíván későbbiek során, akik az adott terület művelői közül kerülnek ki. A feltárás elemei az egyes szempont-csoportok szerint a következő módon csoportosíthatók:

<table>
<thead>
<tr>
<th>Tartalom szerint</th>
<th>Forma szerint</th>
<th>Lelőhely szerint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projekt neve</td>
<td>Létrehozás éve</td>
<td>Link</td>
</tr>
<tr>
<td>Személynév</td>
<td>Terjedelem</td>
<td>Fájl kiterjesztése</td>
</tr>
<tr>
<td>Testületi név</td>
<td>Tárgyszó</td>
<td>Fájl mérete</td>
</tr>
<tr>
<td>Program címe</td>
<td>Bokrosított tárgyszó</td>
<td>Elérési útvonal</td>
</tr>
<tr>
<td>Modul címe</td>
<td>Utalások</td>
<td>HEFOP azonosító</td>
</tr>
<tr>
<td>Dokumentum címe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A Calderoni kereső tárgyszavak szerinti visszakeresést biztosító egységes rendszer, amely figyelembe veszi az egyes tudományterületek belső hierarchiáját, és ezt tükrözi felépítésében, szerkezetében. Tartalmaz tárgyszavakat, összetett tárgyszavakat és ezek invertált változatait, tartalmaz utalókat, amelyek a szinonimák és kvázi szinonimák köréből kerülnek ki. A csoportos tárgyszóalkotás lehetőséget teremt arra, hogy egy tudományterület legfontosabb ágazatait együtt láthassuk, valamint különválaszthassuk egy speciális terület jellemzőit. A
tárgyszavak száma közelít az 1000-hez. A Calderoni taneszköz műfajok, besorolási kategóriák, önálló keresőként is rendelkezésre állnak.

53. ábra: A Calderoni rendszer adminisztrációs felülete

Ez az osztályozás a tartalom kreatív szolgáltatását szolgálja. Az elv a relevancián alapszik, tehát csak releváns dolgok kerülhetnek kapcsolatba egymással. Végül, az informatikai, a szoftveres háttérnek a későbbiekben alkalmasnak kell lennie arra, hogy kirajzolja ezt a relevancia térképet (akár valóban térkép formájában), megkönnyítve a keresést azok számára is, akik nehezen igazodnak el a szakkifejezések útvesztőjében, de mélyebben szeretnének foglalkozni az adott szakterülettel. A kor követelményeinek megfelelően megvalósított Calderoni forráskezelő különböző, fejlett online szolgáltatásokat foglal magába. Az anyagok fellelhetőségének biztosításán túl, miként azt már említettük, fontos cél a kereshetőség, a bemutatás és hozzáférés-menedzselts szolgáltatások, valamint a WEB-2 koncepció keretében a megosztási és közösségi felhasználás elősegítése. A Calderoni program a fejlesztés első lépcsőjében egy adatbázis struktúrát, és egy adatbázist hozott létre, amelyben az összes, a HEFOP programok résztvevői által használt adatformátum integrációja lehetséges.
7.2.3 A Sulinet Digitális Tudásbázis

A Sulinet Digitális Tudásbázis (rövidítve: SDT) a magyar oktatási rendszer szereplői számára ingyenesen használható tartalomkezelő keretrendszer (LCMS – learning content management system), melynek célja a benne levő nagy mennyiségű, közoktatási- és szakképzési tananyag tartalom tárolása, kezelése és publikációja a felhasználók felé.

Az SDT rendszerben a digitális tananyag tartalmi elemei és a hozzájuk tartozó metaadatok (leíró információk) egy sajátos struktúrában kerülnek tárolásra. A tananyagelemek az SDT tananyagok építőkövei. Ezek az egyes tantárgyak anyagában található, elemi, újrafelhasználható tartalmak, melyek önálló jelenléssel bírnak. A tananyagelemek más összefüggésben, esetleg más tantárgy keretében is felhasználható legkisebb tartalmi objektumok (pl. fotók, hangok, filmrészletek, szövegelemek, szimulációk, mozgóképek stb.). Az SDT egyik alapvető célkitűzése a tananyagok átalakíthatósága, újrafelhasználása, így ezek a tartalmak bármilyen más tantárgy, témakör építőelemek lehetnek. A tananyagelemek tartalmukban zárt egészet alkotnak, és a tananyagfejlesztés egyik fontos kritériuma, hogy más összefüggésben se veszítsék el jelentésüket, és illeszthetők legyenek más tananyagelemekhez bármilyen helyzetben. A digitális
tananyagok tehát nem összefüggő multimédiás tartalmak formájában kerülnek a keretrendszerbe, hanem elemi egységek szervezett halmazaként. A tananyag-elemekből az SDT rendszerben különböző, összetett objektumokat lehet építeni. Ezek a tananyagegységek. Ezek közé tartoznak többek között a témák, foglalkozások, a gyűjtemények és a tevékenységek (pl. kísérletek, feladatok) is. A tananyagegységek összetett szakmai tartalommal bíró, valamilyen pedagógiai célt megvalósító tartalmak, melyek igyekeznek az IKT alapú pedagógiai lehetőségeit minél inkább kihasználni.

A tananyagvázlatokban található fogalom-gráf, rendkívüli segítséget nyújt a tananyagban szereplő fogalmak megértéséhez. Az SDT tananyagok böngészése során egy-egy fogalma definíciója automatikusan megjelenik, ha a szöveg fölé meggyőződésére az egér kurzorával. A tananyag készítői azonban az adott foglalkozásban előforduló, releváns fogalmakat grafikus szervezve megjelenítenek, mely kitűnő lehetőséget biztosít az összefüggések áttekintéséhez és az ismétléshez. Ezek a fogalmi térképek természetesen egy lehetséges kapcsolódását jelentik az adott fogalmaknak. Az SDT felhasználói kézikönyve, amely a rendszer teljes struktúráját és működését leírja, itt elérhető:

7.2.4 Az Interaktív Oktatástechnika Portál

A portál célja a pedagógusok számára munkájának segítése a digitális tan- eszközökkel és tananyagokkal, a kapcsolódó módszertani, és technológiai kép-
zésekkel kapcsolatos ismeretek és információk egy helyen való közlésével. Az új ismereteket és oktatási módszertant igénylő interaktív oktatástechnikában való eligazodás nem kevés időt és fájdalságot követel meg a pedagógusoktól. Az Interaktív Oktatástechnika Portál hiánypótló, a maga nemében egyedülálló módon segíti a pedagógusok munkáját azzal, hogy egy helyen foglalkozik az interaktív oktatástechnikai eszközök, a digitális tananyagok, a módszertani és technológiai (IKT) képzések témaköreivel és az ehhez kapcsolódó pályázatokkal, szakmai eseményekkel.

7.3 ÖSSZEFOGLALÁS

A taneszközökben, taneszköz-rendszerekben, más néven ismerethorodózókban tárgyiasult „információ”, és az adattárakba, adat-, és tudásbázisokba rejtett „tudás”, valamint a tanulók által birtokolt információ, ismeret, kompe-
tencia, eszköz-, és tartalomtudás teljes fogalom és kapcsolatrendszere még sok kérdést vet fel. Az viszont tény, hogy a pedagógiai gyakorlat segítségére gomba-mód szaporodnak a tanári munkához kapcsolódó „adatbázisok”, illetve a tanulóit segítő „tudásbázisok”. Az is megesik, hogy a két rendszer integrációjaként sajátos, új eszköz születik. Ilyen, pl. a Sulinet Digitális Tudásbázis, és ilyen a META Magyar Elektronikus Taneszköz Adatbázis is.

A legtöbb könyvtári kézikönyvben az adatbázisokat a szolgáltatott információk szempontjából a Carlos A. Cuadra által kialakított taxonómia alapján szokták csoportosítani. Az adatbázisok típusai szerint a következők: Referenz adatbázisok, ezen belül bibliográfiai (például a MEDLINE, vagy nálunk a PRESSDOC adatbázisa, vagy az ERIC) és forrástájékoztató (pl. név- és címtárak, cégkatalógusok, telefonkönyvek, termék katalógusok, pl. a META) adatbázisok. Ismeretesek még a forrás adatbázisok, elsődleges adat- vagy információforrások, amelyek az eredeti forrás tartalmát (számszerű vagy szöveges adatait, teljes szövegét) szolgáltatják. Három fajtájukat különböztetik meg: numerikus adatbázisok, adatbankok; szöveges-numerikus adatbázisok (pl. életrajzi, vállalati, politikai stb. adatbázisok); teljes szövegű adatbázisok, amelyek eredeti szöveges dokumentumokat tartalmaznak. Ilyen az OSZK-ban fenntartott Magyar Elektronikus Könyvtár, vagy a digitalizált enciklopédiák, pl. a Pallas Nagy Lexikona CD–ROM-on, vagy a CALDERONI, et.c.) Pedagógiai szempontból jelenlős az EBSCO adatbázis. Az EBSCO Publishing EBSCOhost nevű szolgáltatása bibliográfiai és teljes szövegű adatbázisokat kínál. Az SDT az adatbázisok szolgáltatásait messze meghaladja, lévén egy tartalomkezelő keretrendszer (LCMS – learning content management system), melynek célja a benne levő nagy mennyiségű, közoktatási- és szakképzési tananyag tartalom tárolása, kezelése és publikációja a felhasználók felé.

A Magyar Elektronikus Taneszköz Adatbázis az iskolafenntartók, iskolák, pedagógusok, szülők és diákok informálását, valamint a kutatók, fejlesztők, gyártók, kiadók és forgalmazók orientálását egyaránt hivatott szolgálni. Segítséggével a taneszközök a Nemzeti alaptanterv, ill. a kerettantervben meghatározott tantárgyak (biológia, emberismeret, fizika, kémia, magyar nyelv és irodalom, rajz, természetismeret, történelem, egészség, élet) idegen nyelv, énekzene, földünk és környezetünk, környezetismeret, matematika, technika, testnevelés), tantervi modulok, iskolatípus, évfolyam és szakfélék szerint kereszthetők. Az interaktívan használható adatbázis tartalmazza az egyes taneszközök megnevezését, tantárgyi besorolását, rövid funkcionális és tartalmi leírását, jellemzőit (esetenként a képét is), árát, gyártóját és forgalmazóit. Az adatbázis a gyártók és forgalmazók táv-adatszolgáltatással folyamatosan frissítik. A META szolgáltatásai azonban jelentősen kiegészültek azokkal az új típusú elektronikus „taneszközökkel”, amelyek szinte kizárólag a hálózatról érhetők el.

A Sulinet Digitális Tudásváz (rövidítve: SDT) a magyar oktatási rendszer szereplői számára ingyenesen használható tartalomkezelő keretrendszer (LCMS – learning content management system), melynek célja a benne levő nagymennyiségű, közoktatási- és szakképzési tananyag tartalom tárolása, kezelése és publikációja a felhasználók felé. Az SDT rendszerben a digitális tananyag tartalmi elemei és a hozzájuk tartozó metaadatok (leíró információk) egy sajátos struktúrában kerülnek tárolásra.

Az Interaktív Oktatástechnika Portál hiánypótló, a maga nemében egyedüllálló módon segíti a pedagógusok munkáját azzal, hogy egy helyen foglalkozik az interaktív oktatástechnikai eszközökről, a digitális tananyagok, a módszertani és technológiai (IKT) képzések témaköreivel és az ehhez kapcsolódó pályázatokkal, szakmai eseményekkel.

7.4 ÖNELLENŐRZŐ KÉRDÉSEK

1. Melyek az adatbázis típusok? Definiálja az oktatást segítő adatbázis és a tudásváz fogalmakat!
2. Hová sorolható a META, s melyek a Magyar Elektronikus Tanacsköz Adatbázis alap– és kiegészítő szolgáltatásai?
3. Melyek a Calderoni on-line Elektronikus tanulási Forráskezelő Rendszer szolgáltatásai?
4. Mutassa be a Sulinet Digitális Tudásbázist, ismertesse a tartalomkezelő keretrendszerek főbb jellemzőit!

5. Melyek a pedagógusok számára készült Interaktív Oktatástechnika Portál legfontosabb rovatai és szolgáltatásai?
8. A TUDOMÁNYOS PUBLIKÁCIÓK ELÉRÉSÉNEK, ELEMZÉSÉNEK, ÖSSZEGZÉSÉNEK MÓDSZEREI

8.1 CÉLKITŰZÉS ÉS KOMPETENCIÁK

A fejezet és a gyakorlatok végére a hallgató képes lesz:

- online információkeresés szisztematikus végzésére;
- az OT szakirodalmai források azonosítására és tematikus elemzésére;
- a sekunderkutatás jelentőségének belátására, a folyamat értelmezésére;
- a terület szakirodalmai forrásaiból konkrét példák interpretálására.

8.2 TANANYAG

Tomcsányi Pál mértékadó útmutatása szerint, „A tudományos munka során két irányban hasznosítjuk a kommunikációt: „input”-ként a kapcsolatos szakirodalom feltárásával, dokumentálásával alapozzuk meg munkánkat; „output”-ként pedig eredményeinket, mint szakirodalmi alkotásokat tesszük közzé. A két kommunikációs fázis között helyezkedik el a kutatás információ (ismeret) termelő fázisa: ami lehet kísérlettel, megfigyeléssel, megkérdezéssel történő új adatok létrehozása ú.n. primer kutatás; vagy a már közzétett szakirodalmi és egyéb összegyűjtött információkat hasznosító sekunderkutatás.”

69 Tomcsányi Pál: A kutatói és más szellemi munka segítése módszeres kreativitással Polgári Szemle 2012. FEBRUÁR – 7. ÉVFOLYAM, 5-6. SZÁM
56. ábra: Az általános kutatásmódszertan tárgyának elhatárolása

A szakirodalom feltárása, elemzése nem egyszerűen szakmai elvárás, hanem a következő, jelentős előnyökkel jár:

1. Segít a probléma pontos körülhatárolásában, megfogalmazásában. Vagyis a nagyobb szabású, módszeres irodalomkutatás előtt is érdemes a szakirodalmat áttekinteni.
2. Megismerhetjük témánk problématörténetét, előzményeit, saját problémánkat, kutatásunkat el tudjuk helyezni a tudományban.
3. Elkerülhetjük a felesleges munkát, korábbi, érvényes kutatások szükségtelen megismétlését.
4. Segíthet tudományosan alátámasztani a kutatási hipotézist.
5. Segíthet a kutatási módszerek, eszközök kiválasztásában. Áttekinthetjük a mások által alkalmazottakat és azok eredményei alapján dönthetünk a sajátunkról.
6. Hozzájárul kutatási eredményeink értelmezéséhez.

Az eredményes és hatékony információkeresés alapja a szakmai információ-ös intézmények, hagyományos és elektronikus könyvtári szolgáltatások, és a pedagógiai információforrások, adatbázisok típusainak ismerete.

8.2.1 A digitalizált szakirodalom- és a sekunderkutatás fontossága

A kutatásmetodikával foglalkozó Tomcsányi szerinti sekunderkutatás az információs, ill. tudástartalomban kiemelt fontosságú. Természetesen, az internetes források, adatbázisok, forrás-adatbázisok rendkívüli gazdagsága a

A technikája folytán a szekunderkutatás a hatékonyságot is növeli, mert kevésbé költséges módszerekkel vált ki a költségesebbeket (néha primer vizsgálatokat is), illetve ha ez nem lehetséges, az utóbbiakat eredményesebbé teszi a tisztázandó problémák leszűkítésével és a hipotézisek jobb megfogalmazásával.

A közös, szakmától független általános kutatásmódszertan segítségével jobban és másként kell tudni:

<table>
<thead>
<tr>
<th>1. „olvasni”</th>
<th>2. „gondolkodni”</th>
<th>3. „írni”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szakirodalom-kutatás és dokumentáció</td>
<td>Logikai-heurisztikai módszerek</td>
<td>Írásmű megalkotása, szerkesztése</td>
</tr>
</tbody>
</table>

A tudományterületenként (szakmánként) eltérő, speciális kutatásmódszertan segítségével történik:

A szerző szerint „a szekunderkutatás nem új dolog a tudományos munkában, de sajnos a kutatók többnyire hallgatnak róla, esetleg azért nem beszélnek tapasztalataikról, mert maguk kívánják azokat hasznosítani a versenyben. De ahogyan a kutatás elméletét megközelítjük, az sem új és saját találmány. Mo-Ti a népjóléttel és ökonómiával foglalkozó, Kr. e. 500 körül élt kínai filozófus a teóriaalkotással is foglalkozott.” Ez, érthetően a korábbi nézetek elemzését, a gyakorlattal történő szembeállást és a használhatóságot, a „társadalmi gyakorlatban való érvényesség igazolását” jelentette.

A szakirodalom feldolgozásán alapuló szekunderkutatás eredménye lehet a kreatív ismeretgazdálkodás, amely azon alapul, hogy a rendezett információk átnézése, tanulmányozása, egybevetése, kombinálása olyan mentális folyama-
tokat indít meg, amik új ismeretek, felismerések alkotásához vezethetnek. A tudásgazdálkodás, ismeretgazdálkodás alapintézménye a hagyományos és az elektronikus (digitális) könyvtár, amely a dokumentumoknak, ill. a dokumentumokban rögzített információ, célszerűen gyarapított, őrzött, rendezett és használatra szánt ill. arra alkalmassá tett, áttekinthető rendben tárolt és feltárt gyűjteménye. „Nem információrendezeről és visszakeresésről van tehát szó (amit nagyrészt géppel is elvégezhetünk), hanem arról a szellemi tevékenységről, ami az információkból kapott impulzusok alapján, gondolati „innovációk” kezdeményezésére képes.”

8.2.2 Bibliográfia: tudományos publikációk elemzése és összegzése

Az oktatástechnológiai és oktatásfejlesztési kutatások lényegével a korábbi fejezetekben ismerkedtünk. A tudományos kutatás lépései, egyben a szakirodalmi források beillesztési lehetőségei az itt következő bibliográfia feldolgozása alapján, projektekben történnek.

http://www.e-tudomany.hu/etudomany/web/uploaded_files/Bakos_Eszter_A_felnvekv_0 generci_szama_fontos_j_mveltsgek_a_XXI_szzadban.pdf

http://tmt.omikk.bme.hu/show_news.html?id=2093&issue_id=66

http://www.matud.iif.hu/06sze/09.html

Benedek András: Tanulás és tudás a digitális korban, Magyar Tudomány, 9, (2007)
http://www.matud.iif.hu/07sze/09.html

Berlini Nyilatkozat a tudomány nyílt eléréséről
Braun Tibor – Schubert András: Szakértői bírálat (peerreview) a tudományos kutatásban, MTA Könyvtár, Budapest, 1993
Cserné Adermann Gizella: A tanulás- és kutatásmódszertan alapjai, Janus Pannonius Tudományegyetem Felnőttképzési és Emberi Erőforrás Fejlesztési Intézet, 1999 (Humán szervező (munkaügyi) menedzser sorozat, 0866-627X)
http://tmt.omikk.bme.hu/show_news.html?id=4872&issue_id=491
http://www.matud.iif.hu/2011/07/08.htm
http://portal.zmne.hu/pls/portal/docs/PAGE/ZPORTAL/ZMNE_ROOT/KUTATAS/KUTATAS_HDI/TANANYAGOK/TAB112946/GOCZETUDELM_KUTM_ODSZT_TANULMANY.PDF
Hauffe, Heinz: Online információkeresés, mint a kutatási irányok vizsgálati eszköze, Tudományos és Műszaki Tájékoztatás, 30: 10 (1983)
http://tmt.omikk.bme.hu/show_news.html?id=2949&issue_id=332
Holl András: Az elektronikus szakfolyóiratok lehetőségei, Magyar Tudomány, 1., (2008),
http://www.matud.iif.hu/08jan/11.html

Kálmán Anikó: Andragógiai interdiszciplinális, Débreceni Egyetem
Lifelong Learning Központ, 2005 (Lifelong Learning Füzetek)

Karácsony Gyöngyi: DRIVER: A 21. század kutatási infrastruktúrája Európában,
Tudományos és műszaki tájékoztatás, 7, (2010), 57.
http://tmt.omikk.bme.hu/show_news.html?id=5352&issue_id=517

Z. Karvalics László: Az adatsilóktól a tudomány kontrollforradalmáig, Magyar Tudomány, 2008/03

Z. Karvalics László: A cyber-infrastruktúra mint aktuális kihívás és mint
http://www.matud.iif.hu/07apr/11.html

http://epa.oszk.hu/00600/00691/00033/15.html

Kokas Károly: Repozitóriumok a felsőoktatás és a kutatás szolgálatában
[elektronikus dok.]
http://videotorium.hu/recordings/details/2457,Repositoriumok_a_fels
ookatas_es_a_kutatas_szolgalataban

http://www.matud.iif.hu/2010/06/04.htm

http://www.matud.iif.hu/2011/01/09.htm

http://www.matud.iif.hu/2010/05/09.htm

http://tmt.omikk.bme.hu/show_news.html?id=5160&issue_id=505

Magyar nyelvű bibliográfia az Open Accessről [elektronikus dok.], 2011
http://www.hunor-oa.hu/?q=bibliografia

Magyar Tudományos Művek Tára
http://www.mtmt.hu/content/magyar-tudomanyos-muvek-tara

Majoros Pál: A kutatásmódszertan alapjai, Perfekt Gazdasági Tanácsadó, Oktató
és Kiadó Részvénytársaság, 2004

http://www.matud.iif.hu/2010/10/08.htm

Marton János – Pap Kornélia: Mit tud az impaktfaktor? Magyar tudomány, 7.,
(2010), 811-815.
http://www.matud.iif.hu/2010/07/04.htm

Marton János : Scientometriaimódszer kutatók és kutatócsoportok
értékelésére, Tudományos és Műszaki Tájékoztatás, 29:10 (1982)
http://tmt.omikk.bme.hu/show_news.html?id=2908&issue_id=322

Mezei Károly: Mi mennyi?, Élet és Tudomány, 2001/31, 968-970.

Moksony Ferenc: Kutatási stílusok és publikációs kultúrák [elektronikus dok.]

Molnár Gyöngyvér: Az információs-kommunikációs technológiák hatása a
tanulásra és oktatásra, Magyar Tudomány, 9, (2011) 1038-1047.
http://www.matud.iif.hu/2011/09/03.htm

Molnár László: A kutatás-fejlesztési aktivitás mérési módszerei, különös
tekintettel a K+F Teljesítmény Indexre (R&D-PERFIND) és a K+F
Hatékonyság Indexre (R&D-EFFIND)
http://publikacio.uni-miskolc.hu/data/ME-PUB-33877/ml_publ_01.pdf

Pálinkás József – Csépe Valéria – Németh Tamás: Kiválóság – Fenntarthatóság –
Versenyképesség, Magyar Tudomány, 172:11 (2011)
http://www.matud.iif.hu/2011/11/01.htm

Papp Zoltán:A tudományos teljesítmény mérésének problémáiról, Magyar
http://epa.oszk.hu/00600/00691/00002/013.html

Rózsa Lajos – Papp László: A csoportmunka eredménye mint egyéni érdem – és
eyéb megjegyzések a Köztestületi Publikációs Adattár használatáról,

Száva-Kováts Endre: A kirakatba állítás szerzői effektusa a természettudományi
folyóirat-irodalomban. Fizikai közlemények indexelt-formális és
tényleges-teljes hivatkozásállománya, Tudományos és Műszaki
Tájékoztatás, 42:7 (1995)
http://tmt.omikk.bme.hu/show_news.html?id=3320&issue_id=440
Szívós Mihály: Kutatási idő és hatékonyság, Világosság, 1., (2008), 57–78.
A tudományos publikációk elérésének, elemzésének

8.3 ÖSSZEFOGLALÁS

A tudományos munka során két irányban hasznosítjuk a kommunikációt: „input”-ként a kapcsolatos szakirodalom feltárásával, dokumentálásával alapozzuk meg munkánkat; „output”-ként pedig eredményeinket, mint szakirodalmi alkotásokat tesszük közzé. A két kommunikációs fázis között helyezkedik el a kutatás információ (ismeret) termelő fázisa: ami lehet kísérlettel, megfigyeléssel, megkérdezéssel történő új adatok létrehozása ún. primer kutatás; vagy a már közzétett szakirodalmi és egyéb összegyűjtött információkat hasznosító szekunderkutatás.

A szakirodalom feldolgozásán alapuló szekunderkutatás eredménye lehet a kreatív ismeretgazdálkodás, amely azon alapul, hogy a rendezett információk átnézése, tanulmányozása, egybevetése, kombinálása olyan mentális folyamatakot indít meg, amik új ismeretek, felismerések alkotásához vezethetnek. A tudásgazdálkodás, ismeretgazdálkodás alapintézménye a hagyományos és az elektronikus (digitális) könyvtár, amely a dokumentumoknak, ill. a dokumentumokban rögzített információ, célszerűen gyarapított, őrzött, rendezett és használata szánt ill. arra alkalmassá tett, áttekinthető rendben tárolt és feltárt gyűjteménye. „Nem információrendezésről és visszakeresésről van tehát szó (amit nagyírószt géppel is elvégeztethetünk), hanem arról a szellemi tevékenységről, ami az információkból kapott impulzusok alapján, gondolati „innovációk” kezdeményezésére képes.”
8.4 ÖNELLENŐRZŐ KÉRDÉSEK, GYAKORLATI FELADATOK

1. Témabibliográfia összeállítása
2. Választott téma elektronikus forrásainak annotálása
3. Választott téma elektronikus forrásainak szintézise

További szakirodalom:

http://janus.ttk.pte.hu/tamop/kaposvari_anyag/kontra_jozsef/ch01.html
http://pihgy.hu/files/Falus_Bev_ped_kutat%C3%A1s_m%C3%B3dszereibe.pdf
http://www.agr.unideb.hu/oktatas/gg/glossary/s.html
http://janus.ttk.pte.hu/tamop/kaposvari_anyag/voros_peter/ch06.html
http://www.gmconsulting.hu/2004/01/tudasmenedzsment-ismeretkezelesi-lehetosegek-a-felsooktatatasban/