Introduction to Logic and Computer Science Foundation of Computer Science Logic in Computer Science Lecture #3: semantics

Tamás Mihálydeák, László Aszalós

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

- 2 Semantic value
- 3 Satisfiability
- 4 Unsatisfiability
- 5 Logical consequence, validity

Interpretation

Definition (interpretation)

The function ρ is an interpretation of the language $L^{(0)}$ if

$$Om(\varrho) = Con$$

2 If $p \in Con$, then $\varrho(p) \in \{0, 1\}$.

Semantic value

Definition (semantic value)

Let ρ be an interpretation and $|A|_{\rho}$ be the semantic value of the formula A with respect to ρ .

Semantic value

Example

$$\begin{aligned} &Con = \{p, q\}, \text{let } \varrho(p) = 1 \text{ and } \varrho(q) = 0. \\ &\text{Then } |q|_{\varrho} = 0, |p|_{\varrho} = 1, |(q \supset p)|_{\varrho} = 1, |\neg(q \supset p)|_{\varrho} = 0, |\neg p|_{\varrho} = 0, \\ &|(\neg(q \supset p) \lor \neg p)|_{\varrho} = 0 \end{aligned}$$

Models, satisfiable

Definition (model of a set of formulas)

Let $\Gamma \subseteq Form$ be a set of formulas. An interpretation ρ is a model of the set of formulae Γ , if $|A|_{\rho} = 1$ for all $A \in \Gamma$.

Definition (model of a formula)

A model of a formula A is the model of the singleton $\{A\}$.

Definition (satisfiable - set of formulas)

The set of formulae $\Gamma \subseteq Form$ is satisfiable if it has a model.

• If there is an interpretation in which all members of the set Γ are true.

Definition (satisfiable formula)

A formula $A \in Form$ is satisfiable, if the singleton $\{A\}$ is satisfiable.

Satisfiability

Remark

- A satisfiable set of formulae does not involve a logical contradiction;
 - its formulae may be true together.
- A satisfiable formula may be true.
- If a set of formulae is satisfiable, then its members are satisfiable.
- But: all members of the set {p, ¬p} are satisfiable, and the set is not satisfiable.

Subset property of satisfiability

Theorem

All subsets of a satisfiable set are satisfiable.

Proof

- Let $\Gamma \subseteq Form$ be a set of formulae and $\Delta \subseteq \Gamma$.
- Γ is satisfiable: it has a model. Let ρ be a model of Γ .
- A property of *ρ*:
 - If $A \in \Gamma$, then $|A|_{\varrho} = 1$
- Since Δ ⊆ Γ, if A ∈ Δ, then A ∈ Γ, and so |A|_ρ = 1. That is the interpretation ρ is a model of Δ, and so Δ is satisfiable.

Unsatisfiable

Definition (unsatisfiable set)

The set $\Gamma \subseteq Form$ is unsatisfiable if it is not satisfiable.

Definition (unsatisfiable formula)

A formula $A \in Form$ is unsatisfiable if the singleton $\{A\}$ is unsatisfiable.

Remark

A unsatisfiable set of formulae involve a logical contradiction.

• Its members cannot be true together.

Superset property of unsatisfiability

Theorem

All expansions of an unsatisfiable set of formulae are unsatisfiable.

Indirect proof

- Suppose that Γ ⊆ Form is an unsatisfiable set of formulae and Delta ⊆ Form is a set of formulas.
- Indirect condition: Γ is unsatisfiable, and $\Gamma \cup \Delta$ satisfiable.
- $\Gamma \subseteq \Gamma \cup \Delta$
- According to the former theorem Γ is satisfiable, and it is a contradiction.

Logical consequence, validity

Definition

A formula *A* is the logical consequence of the set of formulae Γ if the set $\Gamma \cup \{\neg A\}$ is unsatisfiable. (Notation : $\Gamma \models A$)

Definition

 $A \models B$, if $\{A\} \models B$.

Definition

```
The formula A is valid if \emptyset \models A. (Notation: \models A)
```

Definition

The formulae A and B are logically equivalent if $A \models B$ and $B \models A$.

• Notation: $A \Leftrightarrow B$