Introduction to Logic and Computer Science Foundation of Computer Science Logic in Computer Science Lecture #4: properties of the central concepts

Tamás Mihálydeák, László Aszalós

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund. 1 Models and logical consequence

- 2 Valid formula as a consequence
- 3 Unsatisfiable set as hypothesis
 - 4 Deduction theorem
 - 5 Cut elimination theorem

Models and logical consequence

Theorem

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \models A$ if and only if all models of the set Γ are models of formula *A*. (i.e. the singleton $\{A\}$).

Proof

 \rightarrow Indirect condition: $\Gamma \models A$ and there is a model of Γ such that it is not a model of the formula *A*.

- Let the interpretation ρ be this model.
- The properties of ϱ :

|B|_ρ = 1 for all B ∈ Γ;
 |A|_ρ = 0, and so |¬A|_ρ = 1

- In this case all members of the set $\Gamma \cup \{\neg A\}$ are true wrt ϱ , and so $\Gamma \cup \{\neg A\}$ is satisfiable.
- It means that $\Gamma \not\models A$, which is a contradiction.

Models and logical consequence

Proof (cont.)

 \leftarrow Indirect condition: All models of the set Γ are models of formula *A*, but (and) Γ $\not\models A$.

- In this case $\Gamma \cup \{\neg A\}$ is satisfiable, i.e. it has a model.
- Let the interpretation ρ be a model.
- The properties of *ρ*:

$$|B|_{\varrho} = 1 \text{ for all } B \in \Gamma;$$

$$|\neg A|_{\varrho} = 1$$
, i.e. $|A|_{\varrho} = 0$

• So the set Γ has a model such that it is not a model of formula *A*, which is a contradiction.

Corollary

Let $\Gamma \subseteq Form$, and $A \in Form$. $\Gamma \models A$ if and only if for all interpretations in which all members of Γ are true, the formula *A* is true.

Valid formula as a consequence

Theorem

If A is a valid formula ($\models A$), then $\Gamma \models A$ for all sets of formulae Γ . A valid formula is a consequence of any set of formulas.

Proof

- If A is a valid formula, then $\emptyset \models A$ (according to its definition).
- Ø ∪ {¬A} = {¬A} is unsatisfiable, and so its expansions are unsatisfiable (by theorem).
- $\Gamma \cup \{\neg A\}$ is an expansion of $\{\neg A\}$, and so it is unsatisfiable, i.e. $\Gamma \models A$.

Unsatisfiable set as hypothesis

Theorem

If Γ is unsatisfiable, then $\Gamma \cup A$ for all A. All formulae are the consequences of an unsatisfiable set of formulas.

Proof

- According to a proved theorem: If Γ is unsatisfiable, then all expansions of Γ are unsatisfiable.
- $\Gamma \cup \{\neg A\}$ is an expansion of Γ , and so it is unsatisfiable, i.e. $\Gamma \models A$.

Deduction theorem

Theorem

If $\Gamma \cup \{A\} \models B$, then $\Gamma \models (A \supset B)$.

Proof

- Indirect condition: Suppose, that $\Gamma \cup \{A\} \models B$, and $\Gamma \not\models (A \supset B)$.
- $\Gamma \cup \{\neg(A \supset B)\}$ is satisfiable, and so it has a model.
- Let the interpretation ρ be this model.
- The properties of *ρ*:
 - All members of Γ are true wrt ϱ .

$$|\neg(A \supset B)|_{\varrho} = 1$$

- $|(A \supset B)|_{\varrho} = 0$, i.e. $|A|_{\varrho} = 1$ and $|B|_{\varrho} = 0$. So $|\neg B|_{\varrho} = 1$.
- All members of $\Gamma \cup \{A\} \cup \{\neg B\}$ are true wrt interpretation ρ , i.e. $\Gamma \cup \{A\} \not\models B$, and it is a contradiction.

Deduction theorem - opposite direction

Theorem

If $\Gamma \models (A \supset B)$, then $\Gamma \cup \{A\} \models B$.

Proof

- Indirect condition: Suppose that $\Gamma \models (A \supset B)$, and $\Gamma \cup \{A\} \not\models B$..
- So $\Gamma \cup \{A\} \cup \{\neg B\}$ is satisfiable, i.e. it has a model.
- Let the interpretation ρ be this model.
- The properties of *ρ*:

All members of Γ are true wrt the interpretation ρ.
|A|_ρ = 1
|¬B|_ρ = 1, and so |B|_ρ = 0

•
$$|(A \supset B)|_{\varrho} = 0, |\neg(A \supset B)|_{\varrho} = 1.$$

• All members of $\Gamma \cup \{\neg(A \supset B)\}$ are true wrt the interpretation ρ , i.e. $\Gamma \not\models (A \supset B)$.

Corollary of deduction theorem

Corollary

 $A \models B$ if and only if $\models (A \supset B)$

Proof

Let $\Gamma = \emptyset$ in the former theorems.

Cut elimination theorem

Theorem If $\Gamma \cup \{A\} \models B$ and $\Delta \models A$, then $\Gamma \cup \Delta \models B$.

Proof Indirect.