Mathematics for Engineers 2.

Ágnes Baran, Pál Burai, Csaba Noszály

Seminar Fourier transform

This work was supported by the construction EFOP-3.4.3-16-2016-00021. The project was supported by the European Union, co-financed by the European Social Fund.

Example

Determine the Fourier transform of the following function!

$$f(x) = \begin{cases} 1, & \text{if } x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \\ 0, & \text{otherwise.} \end{cases}$$

Solution: It is known

$$\mathcal{F}[f](\omega) = \int_{-\infty}^{\infty} f(x)e^{-i\omega x}dx \quad \text{és} \quad e^{ix} = \cos(x) + i\sin(x),$$

furthermore, cos is even and sin is odd, so

$$e^{-ix} = \cos(x) - i\sin(x).$$

From this

$$\int_{-\infty}^{\infty} f(t)e^{-i\omega x}dx = \int_{-1/2}^{1/2} \cos(\omega x)dx - i \int_{-1/2}^{1/2} \sin(\omega x)dx$$

$$=2\int_{0}^{1/2}\cos(\omega x)dx=2\left[\frac{\sin(\omega x)}{\omega}\right]_{x=0}^{\frac{1}{2}}=\frac{2}{\omega}\sin\left(\frac{\omega}{2}\right)$$

That is

$$\mathcal{F}[f](\omega) = \frac{2}{\omega} \sin\left(\frac{\omega}{2}\right)$$

1. exercise

Obtain the Fourier transform of the following functions!

•
$$f(x) = \begin{cases} x, & \text{if } x \in [0, 1] \\ 0, & \text{otherwise.} \end{cases}$$

•
$$f(x) = \begin{cases} e^{-x}, & \text{if } x > 0 \\ 0, & \text{otherwise.} \end{cases}$$

•
$$f(x) = \begin{cases} 1, & \text{if } x \in [2, 3] \\ 0, & \text{otherwise.} \end{cases}$$

•
$$f(x) = \begin{cases} -1, & \text{if } x \in [-1, 0] \\ 1, & \text{if } x \in]0, 1] \\ 0, & \text{otherwise.} \end{cases}$$

•
$$f(x) = e^{-|x|}$$
.

Example

Obtain the Fourier transform of the following function!

$$f(x) = \begin{cases} 1, & \text{ha } x \in [2, 3] \\ 0, & \text{egyébként.} \end{cases}$$

Solution. We use the translation rule

$$\mathcal{F}[f(x-x_0)](\omega)=e^{-i\omega x_0}F(\omega).$$

lf

$$g(x) = \begin{cases} 1, & \text{if } x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \\ 0, & \text{otherwise,} \end{cases}$$

then

$$\mathcal{F}[g](\omega) = \frac{2}{\omega} \sin\left(\frac{\omega}{2}\right).$$

Since $f(x) = g(x - \frac{5}{2})$, we have

$$\mathcal{F}[f](\omega) = \mathcal{F}\left[g\left(x - \frac{5}{2}\right)\right](\omega) = e^{-\frac{5}{2}i\omega}\frac{2}{\omega}\sin\left(\frac{\omega}{2}\right)$$
$$= \left(\cos\frac{5\omega}{2} - i\sin\frac{5\omega}{2}\right)\frac{2}{\omega}\sin\left(\frac{\omega}{2}\right).$$

2. exercise

Obtain the Fourier transform of the following function!

$$f(x) = \begin{cases} -1, & \text{if } x \in [-1, 0] \\ 1, & \text{if } x \in]0, 1] \\ 0, & \text{otherwise.} \end{cases}$$

Example

Obtain the Fourier transform of the function $g(x) = e^{-|2x+3|}$, if we know that the Fourier transform of $f(x) = e^{-|x|}$ is $\mathcal{F}[f](\omega) = \frac{2}{1+\omega^2}$.

Solution. According to the dilatation and translation rule of Fourier transform we have

$$\mathcal{F}[f(x-x_0)](\omega) = \mathrm{e}^{-i\omega x_0} F(\omega) \quad \text{ and } \quad \mathcal{F}\left[f\left(\frac{x}{a}\right)\right](\omega) = |a| \mathcal{F}[f](a\omega).$$

Now
$$g(x) = h(2x)$$
, where $h(x) = e^{-|x+3|} = f(x+3)$, so

$$\mathcal{F}[g](\omega) = \mathcal{F}[h(2x)](\omega) = \frac{1}{2}\mathcal{F}[h]\left(\frac{\omega}{2}\right) = \frac{1}{2}\mathcal{F}[f(x+3)]\left(\frac{\omega}{2}\right)$$
$$= \frac{1}{2}e^{\frac{3}{2}i\omega}\mathcal{F}[f]\left(\frac{\omega}{2}\right) = \frac{1}{2}e^{\frac{3}{2}i\omega}\frac{2}{1+\left(\frac{\omega}{2}\right)^2} = e^{\frac{3}{2}i\omega}\frac{4}{4+\omega^2}.$$

3. Exercise

Obtain the Fourier transform of the following functions!

1
$$g(x) = e^{-|1-x|}$$

3
$$g(x) = 2e^{-|3x-1|} - e^{-|x+2|}$$

2
$$g(x) = 5e^{-\left|\frac{x}{3}-2\right|}$$

4. Exercise

Find the Fourier transform of g if the Fourier transform of f

$$f(x) = \begin{cases} e^{-x}, & \text{if } x > 0 \\ 0, & \text{otherwise.} \end{cases}$$

is
$$F(\omega) = \frac{1}{1+\omega i}$$
.

$$g(x) = \begin{cases} e^{4x}, & \text{if } x < 0 \\ 0, & \text{otherwise.} \end{cases}$$

Example.

Obtain the Fourier transform of g if we know that the Fourier transform of f is $F(\omega) = \frac{2}{\omega^2}(1 - \cos(\omega))$. Plot the functions and their Fourier transform.

$$f(x) = \begin{cases} 1+x, & \text{if } x \in [-1,0] \\ 1-x, & \text{if } x \in [0,1] \\ 0, & \text{otherwise.} \end{cases}$$

$$g(x) = \begin{cases} 1 + \frac{x}{2}, & \text{if } x \in [-2, 0] \\ 1 - \frac{x}{2}, & \text{if } x \in [0, 2] \\ 0, & \text{otherwise.} \end{cases}$$

Solution.

$$\mathcal{F}[g](\omega) = \mathcal{F}\left[f\left(\frac{x}{2}\right)\right](\omega) = 2\mathcal{F}[f](2\omega) = \frac{1}{\omega^2}(1-\cos(2\omega)).$$

Slowly changing signal \rightarrow narrow frequency domain Rapidly changing signal \rightarrow wide frequency domain

5. Exercise

Let a, b > 0, $x_0 \in \mathbb{R}$ be given and f is the rectangle impulse from $x_0 - \frac{b}{2}$ to az $x_0 - \frac{b}{2}$ with height a. Determine its Fourier transform (depending on the parameters)! What happens if we change the parameters?

6. Exercise

What will be the Fourier transform of the functions below if we know that

$$\mathcal{F}\left[e^{-\frac{\mathsf{x}^2}{2}}\right] = \sqrt{2\pi}e^{-\frac{\omega^2}{2}}?$$

- $f(x) = 3e^{-2(x-3)^2}$
- $g(x) = e^{-x^2 + 2x},$

Whose Fourier transform is the function $F(\omega) = 3e^{-2(\omega-3)^2}$?

Example

>> syms t x

Find with Matlab the Fourier transform of $f(x) = e^{-|x|}$, plot f and F on the same figure.

Solution: Calculate the Fourier transform with the command fourier!

```
>> f = exp(-abs(t));
>> F = fourier(f,t,x)

Plot f and F on the same figure!
>> fplot([f F])
>> legend('f','F');
>> axis([-4,4,-.5,2.5])
>> ax = gca;
>> ax.XAxisLocation = 'origin';
>> ax.YAxisLocation = 'origin';
```


7. exercise

Obtain the Fourier transform of the functions from the 1. exercise with Matlab! Plot the function f, and if the transform F is real plot it on the same figure with f!

Example

Find with Matlab the inverse Fourier transform of $F(x) = e^{-x^2}$ and plot fand F on the same figure!

```
Solution: Calculate the inverse Fourier transform with the command
ifourier!
>> syms t x
>> F = \exp(-(x)^2);
>> f = ifourier(F,x,t)
Plot f and F on the same figure!
>> fplot([f F])
>> legend('f','F');
\Rightarrow axis([-4,4,-.5,1.5])
>> ax = gca;
>> ax.XAxisLocation = 'origin';
>> ax.YAxisLocation = 'origin';
```


Discrete Fourier transform, (DFT)

Example

Obtain the DFT of the four-point signal x = [2, 3, -1, 1] 4 by hand!

Solution:

$$F_k = \sum_{n=0}^{N-1} f_n e^{-i\frac{2\pi}{N}kn}, \qquad k = 0, 1, \dots, N-1,$$

that is

$$F_k = \sum_{n=0}^{3} f_n e^{-i\frac{2\pi}{4}kn}, \qquad k = 0, 1, 2, 3.$$

So

$$\begin{split} F_0 &= 2 + 3 - 1 + 1 = 5, \quad F_1 = 2 + 3e^{-i\frac{2\pi}{4}} - e^{-i\frac{2\pi^2}{4}} + e^{-i\frac{2\pi^3}{4}} = 3 - 2i, \\ F_2 &= 2 + 3e^{-i\frac{2\pi^2}{4}} - e^{-i\frac{2\pi^4}{4}} + e^{-i\frac{2\pi^6}{4}} = -3, \quad F_4 = \dots = 3 + 2i. \end{split}$$

DFT

1. exercise

Obtain the *DFT* of the following vectors! Give the solutions in matrix form!

- x = [20, 5];
- x = [3, 2, 5, 1].

2. exercise

• The even coordinates of the DFT of a 9-point signal are

$$[3.1, 2.5 + 4.6i, -1.7 + 5.2i, 9.3 + 6.3i, 5.5 - 8i].$$

Obtain the odd coordinates!

• Find the missing data of the DFT:

$$[1-0i, ?, 3+1i, 4-1i, 1-0i, ?, ?, 2-2i]$$

DFT

3. exercise

• The *DFT* of a signal x is

$$X = [10, -2 + 2i, -2, -2 - 2i]$$

Calculate the DFT of y(t) = x(t+1)! Check the solution with Matlab!

Inverse Discrete Fourier transform (*IDFT*)

Example

Obtain the IDFT of the following four-points signal x = [5, 3 - 2i, -3, 3 + 2i] 4 by hand!

Solution:

$$f_k = \frac{1}{N} \sum_{n=0}^{N-1} F_n e^{i\frac{2\pi}{N}kn}, \qquad k = 0, 1, \dots, N-1,$$

that is

$$f_k = \frac{1}{4} \sum_{n=0}^{3} F_n e^{i\frac{2\pi}{4}kn}, \qquad k = 0, 1, 2, 3.$$

So

$$f_0 = \frac{1}{4}(5+3-2i-3+3+2i) = 2, \quad f_1 = \frac{1}{4}(5+(3-2i)e^{i\frac{2\pi}{4}} - 3e^{i\frac{2\pi^2}{4}} + (3+2i)e^{i\frac{2\pi^3}{4}}) = 3,$$

$$f_2 = \dots = -1, \qquad f_3 = \dots = 1.$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

IDFT

1. Exercise

Obtain the IDFT of the following vectors! Write the solution in matrix form!

- x = [2, 3, -1, 1];
- x = [5, 3 2i, -3, 3 + 2i].

2. Exercise

Ask the help of the Matlab commands fft és az ifft! Check our earlier solutions with Matlab!

Example

Multiply the following polynomials!

$$p(x) = 3x^{4} - 2x^{2} - x + 5$$
$$q(x) = x^{3} - 2x - 2$$
$$p(x)q(x) = ?$$

Example

Solution:

By hand:

$$3x^7 - 8x^5 - 7x^4 + 9x^3 + 6x^2 - 8x - 10$$

using the command conv:

-10 -8 6 9 -7 -8 0 3

```
• by the commands fft, ifft:
 >> Q=fft([q, [0, 0, 0, 0]]);
 >> P=fft([p, [0, 0, 0]]);
 >> ifft(P.* Q)
 ans =
 -10 -8 6 9 -7 -8 0 3
```

1. Exercise

Find the square of the polynomial

$$x^{20000} + x^{19999} + \ldots + x^2 + x + 1$$

with Matlab! Compare the solution time of the commands conv andz fft!

2. Exercise

Find the square of the number

$$10^{20} + 10^{19} + \ldots + 10 + 1 = 111 \ldots 111.$$

Example

```
Take a 7-point sample (equidistant) from the function
f(t) = 2\sin(t) + \cos(2t) on the interval [0, 2\pi]. Calculate the DFT of the
sample vector!
>> N=7; t=(0:(N-1))*2*pi/N;
\Rightarrow f=0(t) 2*sin(t)+cos(2*t):
>> x=f(t); X=fft(x)
X = 0.00000 + 0.00000i
-0.00000 - 7.00000i
3.50000 - 0.00000i
0.00000 - 0.00000i
0.00000 + 0.00000i
3.50000 + 0.00000i
-0.00000 + 7.00000i
```