

Created by XMLmind XSL-FO Converter.

Cryptography

Kálmán Liptai

Created by XMLmind XSL-FO Converter.

Cryptography
Kálmán Liptai

Publication date 2011
Copyright © 2011 Hallgatói Információs Központ

Copyright 2011, Educatio Kht., Hallgatói Információs Központ

 iii
Created by XMLmind XSL-FO Converter.

Table of Contents

Acknowledgements .. v
1. Historical Overview .. 1

1. Introduction ... 1
2. Basic Notions .. 1

2. Monoalphabetic substitution ... 4
1. Ceasar cipher ... 8
2. Caesar shift cipher ... 8
3. Polybius square cipher .. 9
4. Hill method ... 9
5. Affin cipher ... 11
6. Exercises ... 11

3. Polyalphabetic substitution ... 13
1. Playfair cipher ... 13
2. Vigenére cryptosystem .. 14
3. Autoclave system .. 17
4. Exercises ... 18

4. Mathematical Preliminaries .. 20
1. Divisibility .. 20
2. Primes ... 22
3. Congruences .. 27
4. Finite fields ... 29
5. Exercises ... 31

5. DES .. 33
1. Feistel cipher ... 33
2. The DES algorithm ... 34
3. Coding the inner block .. 36
4. S-boxes .. 36
5. Keys .. 37
6. Example for DES .. 39
7. The security of DES .. 41

6. AES crypto-system ... 43
1. Basics .. 44
2. Layers of rounds .. 45

2.1. The State ... 45
2.2. SubBytes transformation .. 46
2.3. ShiftRows transformation ... 46
2.4. MixColumns transformation ... 47
2.5. AddRoundKey transformation .. 48

3. Secret communication ... 50
4. Exercises ... 51

7. Knapsack .. 52
1. The Knapsack Problem ... 54

8. RSA .. 58
1. RSA ... 58
2. Pragmatic comments ... 63
3. Digital signiture ... 66
4. Exercises ... 67

9. Primality tests and factorization ... 68
1. Primality tests .. 68

1.1. Euler–Fermat primality test .. 68
1.2. Solovay–Strassen primality test .. 69
1.3. Miller–Rabin primality test ... 70
1.4. AKS algorithm .. 70

2. Factorization of integers .. 71
2.1. Fermat factorization .. 71
2.2. Pollard’s factorization algorithm ... 73

 Cryptography

 iv
Created by XMLmind XSL-FO Converter.

2.3. Quadratic sieve algorithm ... 75
3. Exercises ... 77

10. Elliptic Curves .. 79
1. Elliptic Curves ... 80
2. Operations on Curve Points .. 81
3. Elliptic curves over the field of rational numbers ... 83
4. Elliptic curve over finite fields .. 83
5. Modular operations on curve points .. 85
6. Discrete logarithm ... 86

6.1. ECDH - Elliptic Curve Diffie - Hellman key agreement .. 86
6.2. EC ElGamal encryption .. 87
6.3. ECDSA-Elliptic Curve Digital Signature Algorithm .. 88

7. The signing algorithm ... 88
8. Exercises ... 88

Bibliography ... xc

 v
Created by XMLmind XSL-FO Converter.

Acknowledgements

Cryptography is an infinitely exciting and fascinating chapter of human thinking. Historical events and

prominent members of human thinking have contributed to its development. Wars and conflicts fastened its

advancement, which is a sad fact. On the other hand, the joining of outstanding scientists into the world of

encryption enriched this field. Newer and newer disciplines helped and still help to secure flow and store

information in the 21th century.

This is a very complex field of the science and draws on several resources. Cryptography has become

curriculum in higher education all around the world, so as in Hungary. To create and complete the syllabus

which can be read and studied in the followings, I have received a lot of help from my colleagues and students.

Probably without their interest and sensitivity to this issue I would not have undertaken this job.

I would like to express my thanks hereby to Péter Olajos Phd. and Tibor Tómács Phd. for their countless and

patient help that I always received from them. The natural curiosity of my students and their works have also

given the level of the final work a great push. I would express my thanks to Kiss Norbert and Gábor Mészáros

for the demonstrative program of AES, to György Győrfi and Ádám Csintalan for the Playfair program, to

István Csonka and Viktor Trombitás for demonstrating the DES. I owe my gratitude to Tivadar Radácsy, Tamás

Vass, Beáta Mátéfi, Judit Kovácsa and to many of my thesis writers as they showed me that we are at the gate of

inexhaustible interest, when we are studying cryptography.

In this part I would say special thanks to Attila Egri–Nagy Phd. and Csaba Vreczenár that the work could be

made in English too.

Finally I would like to thank my family that they endured the feverish job which the creation of the course book

demanded.

 1
Created by XMLmind XSL-FO Converter.

Chapter 1. Historical Overview

1. Introduction

The history of cryptography is at least as complicated and intricate as the history of mankind itself. This

statement would be hard to prove formally, but if we consider the past centuries, all the decisive moments seem

to be important from a cryptographical viewpoint as well. In order to see the path leading to today’s

cryptographical applications we need to go through the basic notions.

The term cryptography originates form the ancient Greek words „kryptos” (hidden) and „grápho” (write) word.

In plain English we could say secret messaging, but cryptography itself is now well-understood terminology.

It is easy to state the basic problem. How can we send a message in a way that the receiver can easily read it but

for a third party it is nearly impossible, or it takes a huge amount of time to decipher the message. Later we will

determine precisely what does “huge amount of time” exactly mean, but for the time being the everyday

interpretation is enough.

The meaning of the actual text (or the lack of it) is not important to us, since most of the time we encrypt text

that is already encoded, therefore it is already just a sequence of letters and numbers. In the following by

encoding we mean the process of substituting letters (symbols) by numbers. An example is the usual coding of

characters by their ordinal number in the alphabet’s order.

In historic times the encrypted message consisted of letters, nowadays these texts are mainly bit-sequences.

In following chapters we can distinguish between two parts, that differentiate both historically and in principle.

The first part is usually called classical cryptography and it lasted until the middle of 20th century. In this part

clever ideas without mathematical methods dominate, so a method consists of a series of innovative tricks, that

is kept top secret. These moments of ingenuity are usually connected to historical periods or events. We will talk

about statistical methods that can be used to crack these older encryptions with today’s computers.

The second part is public key cryptography. These methods make the encryption method and encryption keys

public. Of course a “secret trapdoor” is set up and we keep the decryption keys in order to attain privacy. These

methods are based on mathematical theorems and breaking the encryption would need enormous computational

time and power.

We have another distinction between the encryption methods beyond the classic/public key classification. Those

methods that use the same keys and encryption method for both the sender and the receiver are called

symmetric-key encryptions. All classical methods are of this kind but there are also contemporary algorithms

using symmetric-keys. For instance the DES or AES methods.

It was thought impossible that we can have a method for secret communication without sharing some common

secret by the communicating parties, or such that we know the encryption key but we are still unable to decrypt

the message. In the 20th century this riddle was solved, and we call these methods asymmetric-key encryptions.

The prime example is the RSA method.

2. Basic Notions

Independent on the text and the type of the encryption we can determine a logical sequence of secret

information exchange. We start with a plaintext written in natural language. First we have to encode then

encrypt the message getting the encrypted text, this result will be referred to as the cryptotext.

This message can be transmitted through an open channel, if we used a good method. The receiver can decrypt

the message by using the decryption key , thus getting . After decoding we get back the original

plaintext. Clearly the notation comes from the corresponding English words: text, encrypt, decrypt,

is the applied key (see [17]). In the literature the terms ”cleartext” and ”ciphertext” or briefly ”cipher” are often

used instead of ”plaintext” and ”cryptotext”. The verbs for translation are in the case ”encipher” and ”decipher”.

Sir Francis Bacon (1561-1626), who was active in politics and philosophy, thought about the question ’What

makes a good a cryptosystem?’ as well. In his opinion and methods should be simple and the encrypted

 Historical Overview

 2
Created by XMLmind XSL-FO Converter.

text should look innocent. Today, at the age of computers every bit-sequence looks innocent so this requirement

is not a problem, but the others are still valid guidelines.

Sir Francis Bacon

Probably it is clear for everyone that no one can work on encryption without trying to break the code. We can

test our methods by playing the role of the illegal intruder and trying to crack the system. In fact, it is often more

exciting trying to crack existing methods rather than devising new ones. At the same time we can learn a lot

from these attempts.

From now on we assume that we know the encryption method and the main task is to decrypt, to figure out the

original message.

The main question is whether the decryption is possible at all or not? We have several cases:

1.

Let’s suppose that we know some encrypted text that is quite long. In this case we can try to crack the

classical cryptosystems if we know some statistical information on the given language.

2.

We also have chance If we know some pairs.

3.

If the intruder is skillful enough to pretend to be a legal user then pairs can be obtained of his/her

choice. This also significantly increases the chances.

We should mention here that since we are interested mainly in the mathematical aspects of cryptography we do

not discuss some historically important cryptosystems. Such an example is encrypting with a Codebook, the

“aristocracy of cryptosystems”, where both parties use their own dictionaries. Also, hiding the message with

invisible ink or writing it on a shaved head on which the hair grows eventually. These later methods belong to

steganography. The main difference between cryptography and steganography is that the first aims to hinder

third parties to be able to read the message, while the later aims to hide even the existence of the message.

Digital images give ample opportunities for applying steganography in 21st century. If we change only a bit in

the color information of a pixel, the change is not really perceivable (using not too many points), but for the

insider the changes code useful information. The same applies for digital sound recording as well.

 Historical Overview

 3
Created by XMLmind XSL-FO Converter.

steganography.zip

prog/steganography.zip

 4
Created by XMLmind XSL-FO Converter.

Chapter 2. Monoalphabetic
substitution

In this chapter the classical encrypting methods will be examined (the work of Simon Singh provides an

excellent summary of the topic, see [18]). Here we describe, or rather break, the cryptography of ancient times,

noting that these were hidden from uninitiated eyes contrary to the present-days’ modern public-key algorithms.

Simon Singh

The first known cipher, the scytale from Sparta, had already been used in the 7th century B. C.

Aeneas Tacticus, Greek author, lists several methods in his military documents, written around 360 B. C. The

classical methods were mostly used at wartimes. Therefore the work of Aeneas Tacticus also deals with castle

defense. Although we would not claim that this was the only reason of cryptography. Diplomacy, public

 Monoalphabetic substitution

 5
Created by XMLmind XSL-FO Converter.

administration, science and the desire for private life could give the reasons of cryptography in ancient times as

well.

There is a very special interest with Hungarian reference, namely the diary of Géza Gárdonyi. Gárdonyi

developed a unique cipher for himself that consisted of strangely shaped symbols. He mastered the use of it so

well that he managed to write as fast as normal handwriting. To hide his thoughts even deeper, the cover of the

diary was titled as “Tibetan grammar”. However this odd writing is not Tibetan nor Chinese, Korean or Indian.

These symbols are used nowhere else on earth. These are Gárdonyi’s own inventions but indeed recall the image

of some exotic writings.

Géza Gárdonyi

The secret diary remained unsolved from his death in 1922 until even 1965. Then the Géza Gárdonyi Memorial

of Eger announced a competition for decrypting the cipher. Gábor Gilicze, a university student and pretty officer

Ottó Gyürk had solved the problem independently of each other and the entire secret diary was published.

Diary of Géza Gárdonyi

 Monoalphabetic substitution

 6
Created by XMLmind XSL-FO Converter.

The statistics of the relation of characters and letters examined by linguists are as helpful in encrypting classical

ciphers as computers. It is not known, who recognized first that if the frequency of the letters is known, it can be

used for decryption, but we do know who had documented this method first. Yaqub ibn Ishaq al-Kindi,

philosopher of the Arabs, did it in the 9th century. His most important thesis is entitled “Secret messages”, and

had only been discovered in 1987 in the Ottoman Archive.

The use of the statistical method should be imagined in the following way. The encrypted text is being examined

statistically, that is we explore the frequency of occurrence of certain letters, letter pars or in some cases even

letter groups. Having the frequency we compare it to the known frequencies of the natural language, in order to

find possible matches. In easy cases the system can be broken by finding one single letter, but for more

complicated systems it is much more difficult.

The first serious frequency analysis in modern age was performed in English and it is based on 100362 letters

altogether. It was created by H. Beker and F. Piper and was first published in their work titled “Cipher Systems:

The Protection of Communícation”. The following tables contain their data.

The statistical features of the Hungarian language are also well known. The most common vowels and

consonants are ’a’, ’e’ and ’l’, ’n’.

 Monoalphabetic substitution

 7
Created by XMLmind XSL-FO Converter.

Certainly, the statistical mapping not only covers letters but also letter pars and triplets. On the other hand not

just its words and syntax characterize a given language but its set of characters too. Certain languages contain

letters that are missing from other languages even if the way of writing is mostly the same. It usually turns out

from such monitoring which language is of our business.

In most cases it is presumable that the given language is known, moreover it is well charted in terms of

frequency. Rare language families can be a more difficult task and could give a hard time even to legal

decoders, as very few people may understand the given language.

One well known example of the use of non-charted languages was the Navajo language used in World War II.

The language of one of the most populous but rather illiterate Native American tribes was especially suitable for

sending each other oral messages on the frontlines.

The messages had not been translated to Navajo as the encrypted text used substitute expressions. They had

created a very complicated system, in which each military expression in English had been replaced with a

Navajo word. Although the appropriate word had some logical relations with its English counterpart (like potato

meant grenade) in order to make it easier to memorize, but it was not a direct translation. Therefore the

messages did not make any sense for outsider Navajos.

Navajo code talkers also took part in the Korean and Vietnamese wars. (Just for the record we would like to

mention that because of its secrecy the participating soldiers had not been awarded at all until 1982. Then

President Reagan officially thanked Navajos and pronounced 14th August the Navajo Code Talkers Day).

 Monoalphabetic substitution

 8
Created by XMLmind XSL-FO Converter.

Without the help of computers even the classical ciphers can be difficult to code and decode thus simple support

programs have been created in behalf of demonstration. Henceforward for being pragmatic we agree in using

letters without accent and in case of English language letter J is taken off due to its rare occurrence. Now

suppose that our alphabet contains 25 letters.

At first we are going to deal with the so called monoalphabetic substitution, which means that the alternatives of

certain letters do not change during encryption. This makes them quite easy to decode, so obviously they are not

used any more, but their historical significance is worth mentioning.

1. Ceasar cipher

The first encrypting method being examined, is the Caesar cipher that is made up of a simple slip of the

Alphabet. The use of substitution as an encrypting method for military purposes had been documented in the

“Commentaries on the Gallic War” by Julius Caesar. Caesar had recourse to use cryptography so often that

Valeris Probus wrote an entire thesis of the code used by him, but unfortunately it had not survived.

Julius Caesar

However due to Suetonius, who wrote his work “The twelve Caesars”, we can get a detailed description of

replacement algorithm used by Caesar. He changed every letter of the Alphabet for the third following ones.

Obviously, if the scale of shift that is the alternate of a letter is revealed, the algorithm becomes easily solvable.

Using statistic method we can find the substitute letter.

Ceasar.zip

2. Caesar shift cipher

It is based on the same principles like the simple Caesar cipher, but here we use a keyword to shift the Alphabet.

In choosing the key, we need to pay attention (now and also later) that such word to choose, that consists of

different letters.

prog/Ceasar.zip

 Monoalphabetic substitution

 9
Created by XMLmind XSL-FO Converter.

Now encrypt the word: cryptography. Let the keyword be SOMA.

CRYPTOGRAPHY = MQYNTLDQSNEY

A little bit complicated version of Caesar cipher, when the text is divided into units of letters and the scale of

shift is different per letters within the certain units. But we can score here as well if we are able to find out the

scale of shift within these units, that is after how many letters is the scale similar. Simple statistical reviews get

us to attain our goal soon, with this easy cipher, just like with any other classical ciphers.

3. Polybius square cipher

The next truly ancient cipher is called Polybius. Polybius was an adviser of the great general of the 3rd Punic

War Cornelius Scipio. We may encrypt a text by using the following chart, where each letter is replaced with a

pair of letters.

In this case any letters can be encrypted by finding the appropriate index of the rows and columns. Every pair

stands for one letter, for example hides letter and letter .

The choice of the index is of course optional from the world of letters or maybe from any other signs. The letters

of the Alphabet are replaced by vowel pairs, and these can easily be hidden in words. You may read an

encrypted text hereby: LOOK! WHAT’S THAT UNDER THAT USUAL POOR? To decrypt the text all the

vowels have to be graded in pairs.

Then we have the following pairs: OO AA UE AU UA OO. Now we can decode the message by using the chart

above. The secret message is: Save us.

Like the previous ones, the encrypted can be resolved by using statistical methods and paying attention that

pairs stand for single letters.

4. Hill method

Lester S. Hill developed this method in 1929 that was named after him and uses matrixes.

Lester S. Hill

 Monoalphabetic substitution

 10
Created by XMLmind XSL-FO Converter.

It is also capable of encrypting any blocks regardless of its length. To use the Hill cipher we create a simple

coding first, in which we replace the letters of the Alphabet with ordinal numbers, that is:

After this substitution we consider each . For encryption we use an optional type invertible

matrix and write its elements .

The words to be coded are written down without spaces, and divided into units containing letters. Then we

decode these units and create dimensional column vectors from them. After executing the operations

mentioned above, the formula can be provided by matrix multiplication. The operation results column

vectors, which reveal the message after decryption.

For example, encrypt the word MINDIG by using a matrix.

Now compose vectors according to the given rule.

Take the elements of these matrixes and we get the following matrixes.

Thus we have gained the encrypted word, HBALRY.

Decryption is obviously easy if matrix is known, because if we have chosen properly, the matrix is invertible

and the product (taking the result) provides the codes of the letters of the original text.

Any illegal intruder must be aware of the image of two pairs. In order to determine it, we have to examine the

distribution of the letter pairs first. After identifying the most common pairs, we may have a good chance of

decryption.

 Monoalphabetic substitution

 11
Created by XMLmind XSL-FO Converter.

Suppose that, the images of matrixes are known. Then the chosen matrix comes from the following

matrix multiplication.

However, we might need a few luck as well to succeed at once, as the given matrix may not be invertible. In this

case, we look for another suitable pair.

Remark. It also comes after some easy calculations, that the invert matrix will be the following

We also note that if the given text cannot be divided into units with length , then we either add some extra

letters which do not change the meaning, or we consciously make some grammatical mistakes. This method

proved to be very effective at the time of its invention, as it is quite labor-intensive, but with appearance of

computers both the encryption and the decryption became obvious.

5. Affin cipher

The affin cryptosystem is the next one in our row of description. Suppose that and are such positive integers,

that and . Then after using the previously introduced and by this time habitual

coding each letters is replaced with the result of . Finally the given result is decoded to

provide the original message.

We also note that assuming that is necessary for the assignment that provides

the final result, to be bijective. Otherwise it could be possible, that different letters have the same image.

Because if we encrypt and their generated image would be and .

These determine the same numbers if is fulfilled and according to the condition it

can only happen if and are the same numbers.

The decryption of this system uses statistical methods. After finding two letters the system collapses.

6. Exercises

1.

Encrypt the term ”The die has been cast” with Caesar cipher, by using the word CRYPTO as the key.

2.

Use affin cipher to encrypt the following phrase ”Sapienti sat” where and .

3.

Encrypt the quote ”Be great in act, as you have been in though” (W. Shakespeare) with the help of the Hill

cipher.

4.

Design Polybius cipher by using geometrical formations.

5.

 Monoalphabetic substitution

 12
Created by XMLmind XSL-FO Converter.

Decrypt the document in the file szidd2.txt with the help of the attached statistic maker program stat.exe. The

encryption has been made by Caesar cipher and the original text is from Herman Hesse’s book, Siddharta.

prog/szidd2.txt
prog/stat.exe

 13
Created by XMLmind XSL-FO Converter.

Chapter 3. Polyalphabetic
substitution

It turns out during a more detailed examination of the Hill cipher that the images of identical letters are not

always identical. For example, if we use a 2x2 matrix for encryption, letter group ”VE” might have different

images in the words UNIVERSITY and VERSA.

These encrypting methods are called monoalphabetic substitutions in a broader sense. This leads us to the

polyalphabetic substitutions, mentioned in the title, where the substitution of the identical text sequences are

different during the encrypting process.

1. Playfair cipher

The first method of its kind is the so-called Playfair. This is a symmetric cipher, Charles Wheatstone invented it

in 1854.

Charles Wheatstone

Lord Playfair promoted the use of this method. Taking advantage of the reduction mentioned above, we place 25

letters of the Alphabet in a 5x5 square. We form the text in a way that it contains an even number of letters. In

case of odd numbers of letters we may make a grammatical mistake or double a character. Then we divide the

text into blocks containing two letters, without placing identical letters in one box (the previous tricks can be

applied if necessary).

If the resulted letter pair is not set in identical column or row, then considering the letters as the two opposite

vertexes of an imagined square, the letters in the other two vertexes provide the encrypted image. If they are set

in identical column or row, then according to agreement we shift the letter pair up or down, left or right and so

gain letters that gives us the encrypted image.

 Polyalphabetic substitution

 14
Created by XMLmind XSL-FO Converter.

The above-mentioned encrypting methods can be read from the illustration. For example the image of AE pair is

FO, the encrypted version of HA is CX while it is IN for CK.

Using the previous method, the encryption does not change if we perform a cyclical change of row and column.

We can apply the use of a keyword here, as well. Let the compound KEYWORDS be the key, then list all the

missing letters, without repeating any.

Decryption is more difficult than in the previous cases. Examination and statistical processing of letter pairs,

triplets and quartets lead to the result. Then the resulted data has to be compared to the rules of the given

language. In case there is a keyword, resolving the length of it provide the decryption of the method, as the

letters come in alphabetical row after the keyword. However the coder has several possibilities to make the

decoding process more difficult. Every letter can be encrypted differently or even translated to a foreign

language.

You can try this method using the program Playfair.exe.

2. Vigenére cryptosystem

Although the system is titled as Virgenére cipher, more creators contributed to the system. Its origin can be

dated back to Leon Batista an Italian philosopher and polymath from the 15th century. The scientist was born in

1404 and was a prominent figure of the renaissance, besides many outstanding works, his most significant one is

the Trevi Fountain. He was the first one who thought about a system which replaces the monoalphabetic

cryptology by using more than one Alphabet.

Unfortunately it was left unfinished, so others could be victorious. The first one was a German abbot Johannes

Trithemius, born in 1462 then he was followed by the Italian scientist Giambattista della Porta, born in 1535 and

finally a French diplomat, Blaise de Vigenére, who was brought forth in 1523.

Blaise de Vigenére

Vigenére got acquainted with the works of Alberti, Trithemius and Porta at the age of 26 during a two year long

commission in Rome. At first his interest turned towards cryptography only for practical reasons and in

connection with his tasks as a diplomat. Later, after leaving his career, he forged their thoughts to a brand new,

unified and strong cryptosystem. The work of Blaise de Vigenére culminated in his thesis titled Traicté des

prog/Playfair.exe

 Polyalphabetic substitution

 15
Created by XMLmind XSL-FO Converter.

Chiffres (Discourse of cryptography) and published in 1586. However the system was quoted as “le chiffre

indéchiffrable” (unbreakable code), it had been forgotten for a long time.

Let us see the following table.

Encrypt the following proverb, ”The ball is in your court”. Let the chosen key be the word MARS. Write the

key periodically above the text to be encrypted.

Then the alternate of T, call it F, is going to be the Mth unit of the Tth row. The alternate of H is going to be the

Ath unit of the Hth row, H. Serial repetition of these steps leads us to the encrypted text.

A similar square can be made, with the only difference that the order of the letters is the opposite. This one is

called Beaufort square after its creator Rear - Admiral Sir Francis Beaufort. A wind speed measure also

possesses the Admiral’s name.

The Vigenére system is a typical example of the encrypting method, when a keyword is repeated periodically

and the encryption is based upon it. As being a polialphabetic system, obviously the long standing statistical

 Polyalphabetic substitution

 16
Created by XMLmind XSL-FO Converter.

method cannot be used. However, if the length of the keyword is known, it can be reduced to a monoalphabetic

system.

Suppose that the length of the keyword is known currently it is four characters long. Place the text to be

encrypted into four columns in the following way:

The numbers indicate the position of the letters in the encrypted text. The same letter in the same column

represents identical letter from the original text. This means that if we had a good method to determine the

length of the keyword, we could use the long standing statistical method after having made this arrangement.

Frideric Kasiski, a German cryptographer, developed a method in the 1860s which can help us to find out the

length of the keyword. The Kassiski method, named after him, was published in 1863 and essentially it is no

more than the examination of the repeating occurrence of the identical letter groups in the encrypted text. We

observe the distance of these occurrences that is how many letters there are between them.

For example, suppose that a computer program hit upon the repetition of letter group RUNS. The occurrence of

such letter group can be accidental, but the longer the group is that we can examine, the more possible it is that

the sender encrypted an identical part of the text. If the occurrence of the specific follows the forthcoming

pattern:

 RUNS 28 letters RUNS 44 letters RUNS 68 letters RUNS

Then we assume that the length of the keyword equals the greatest common factor which is four in this case. If

we examine the occurrence of more than one letter groups, it lies in our power to check our assumptions. If we

are lucky these make the length of the keyword unambiguous. Otherwise it turns out only after the columns’

division and the application of statistical methods, which variant is the correct.

It is also true, as it has been previously that the method is rather time-consuming without using computers, in

our case we can obviously hit the target fast.

We note, it seems that independently from Kasiski , Charles Babbage had also materialized this idea back in

1846.

Charles Babbage

 Polyalphabetic substitution

 17
Created by XMLmind XSL-FO Converter.

3. Autoclave system

The autoclave system is an encrypted method of the Vigenére method that was invented by the famous

mathematician Gerolamo Cardano (1501-1576). In this system we use the source text as the key with the help of

a certain shift in the text.

Gerolamo Cardano

Let the measure of the shift be 4 letters and encrypt the well known Latin proverb: ”VERITASVINCIT”, then

the encrypted text is the following:

Source:

 Polyalphabetic substitution

 18
Created by XMLmind XSL-FO Converter.

Key:

Encrypted text:

The use of the key is the same as in the Vigenére system. The remaining part can be filled with the end of the

source text as we have just seen, or we may figure out a suitable keyword. At present, the name JACK is an

appropriate choice, so we can define the encrypted text.

Source:

Key:

Encrypted text:

The legal decoder obviously has an easy job, as by knowing the keyword he also gets the first few letters of the

original text, which mean the further decrypting key.

Another variation may also be used. We choose a key for encryption again, but contrary to the other method, it

is not the source text that gives the key but the letters of the encrypted text.

Source:

Key:

Encrypted text:

The main aim of the illegal decoder is to determine the length of the key. The previously detailed Kasiki method

provides an opportunity to find out the length of the keyword here as well. However, we may notice that the

method is not as strong as it was in the previous cases, because the possibility that a specific letter group encrypt

the same group is only acceptable in sufficiently long texts.

The original method also requires the cognition of the keyword. We choose an optional letter with the help of a

frequency chart (there are 25 possibilities). This letter together with the first letter of the encrypted text

determines the first letter of the source text. As we had used the letters of the source text for encryption, we were

able to find a new letter of the key.

In our original example, where the key contained 4 letters, we may find the 5th letter of the key. Continuing this

process we may also determine the letters of the source text in positions . If the frequency of these

letters is contradictory to the results, we try a new letter. The determination of the remaining letters of the

keyword follows this pattern.

In the first chapter we summarized some old encrypting methods. We could observe that our primal help is the

examination of the statistical occurrence of the letters. Therefore the decoder of the encrypted text must have

accurate knowledge of the given language that has been encrypted. Obviously the senders figure out all kinds of

methods to make the job of the illegal decoders harder. One of the most popular tricks is that the text is

translated from the certain well known language to a rare, statistically unmapped language. Here the main motto

of cryptography gains its importance: ”Never underestimate the coder.” With this remark we have floundered to

an area beyond cryptography which is called the world of politics, intelligence and conspiracy and this would

lead us far from our interest.

4. Exercises

1.

Encrypt the world ”probability” with the Playfair method, introduced above.

2.

Use the Vigenére system to encrypt the English proverb ”All roads lead to Rome”. Use the word ”versa” as

the key.

 Polyalphabetic substitution

 19
Created by XMLmind XSL-FO Converter.

3.

Use the Autoclave system to encrypt the name of its creator Gerolamo Cardano. Let the keyword be the word

”math”.

4.

Repeat the previous encryption in a way that after using the keyword let the encrypted text to be the

keyword.

5.

Using the Playfair method and the word ”playfire” as the key decrypt the following text:

”ypvieirddnizspyvtsarlypxneztftftnevyajykrpdv”

 20
Created by XMLmind XSL-FO Converter.

Chapter 4. Mathematical
Preliminaries

1. Divisibility

Next we discuss the mathematical foundation indispensable for understanding the upcoming chapters. Here we

do not introduce elliptic curves, this will be done separately.

 Definition 4.1. We say that natural number is divisible by natural number if there exists a

natural number such that .

For divisibility we use the notation. In case is not divisible by we use .

Here we mention a few important properties of divisibility.

 Theorem 4.2.

1.

 implies for all integer ;

2.

 and imply ;

3.

 and imply that

for all integers

4.

if , then and are equivalent

 Theorem 4.3 (Division with remainder property).

For arbitrary and integers there exist unique and integers such that

 Definition 4.4. The greatest common divisor of and (at least one of them is nonzero) is

the greatest element of the set of their common divisors and it is denoted by .

 Theorem 4.5. If is the greatest common divisor of integers and , then there exist and

 integers such that

 Theorem 4.6. can be characterized in the following two different ways:

1.

 is the smallest positive value of the form , and arbitrary integers

 Mathematical Preliminaries

 21
Created by XMLmind XSL-FO Converter.

2.

 is a common divisor of and such that it can be divided by all common divisors of

and

 Theorem 4.7. For all positive integer

 Theorem 4.8. If , and , then

If , then

 Definition 4.9. We say that and are relative primes if .

 Theorem 4.10. For all

After introducing these basic properties we give a theorem for determining the greatest common divisor. It is

named after the ancient Greek mathematician Euclid.

Euclid

Euclid’s famous textbook, The Elements, is said to be the second most printed work after The Bible. However,

the following algorithm is likely to be a a result obtained by mathematicians before Euclid, so it is not his own.

 Theorem 4.11 (Euclid’s Algorithm).

We apply the division with remainder property to given integers and , thus we get the

following sequence of equations:

 Mathematical Preliminaries

 22
Created by XMLmind XSL-FO Converter.

The greatest common divisor of numbers and számok is , the last nonzero remainder of the

division algorithm.

2. Primes

Primes, jus like atoms in the material world, play a very important role in number theory and in cryptography as

well.

 Definition 4.12. An integer number is called a prime if does not have a divisor

such that . If an integer is not a prime then it is called a composite number.

 Theorem 4.13 (Fundamental Theory of Arithmetic, Gauss 1801.). Any integer integer

number can be written as a unique product (up to ordering of the factors) of prime

numbers.

This theorem is from Carl Friedrich Gauss (1777-1855) who is often called “the Prince of Mathematics”.

Carl Friedrich Gauss

His outstanding talent became obvious early in his childhood, there are many anecdotes on the young Gauss.

The Disquisitiones Arithmeticae, written at the age of 24, is a foundational work of number theory and it

contains the above theorem.

Remarks on factorization

Next we show that for an arbitrary composite number its smallest factor is smaller than . Let

In this case

The previous result makes an interesting thought experiment possible. This indicates the mysterious properties

of primes and their applicability in cryptography.

For a number with 100 digits

For simplicity we assume that our computer performs steps per second. This is can be considered to be a

good approximation of today’s available computational power. Then seconds, approx. years are

needed to find the smallest prime factor with exhaustive search. In order to get the feeling how much time this is

it is enough to know that the estimated age of the universe is years.

 Mathematical Preliminaries

 23
Created by XMLmind XSL-FO Converter.

Since the number of primes and their distribution is very important for cryptographical applicability we need to

study a bit more number theory.

 Theorem 4.14 (Euclid). The number of primes is infinite.

 Theorem 4.15. In the sequence of primes there are arbitrary big gaps, i.e. for arbitrary

positive integer there exist consecutive composite numbers.

Georg Friedrich Bernhard Riemann (1826-1866) was an excellent mathematician who died at a very young age.

Georg Friedrich Bernhard Riemann

He made extraordinary contributions to analysis, differential geometry, and analytic number theory. His

conjecture (Riemann conjecture) is one of the seven Millenium Problems. The Clay Institute of Mathematics

founded a million-dollar prize for solving any of these problems. Riemann gave this definition in his work on

the behavior of prime numbers.

 Definition 4.16. Let denote for all real the number of primes not greater than .

Pafnuty Lvovich Chebyshev (1821-1894) Russian mathematician succeeded to prove that between any natural

number and its double there exists a prime number. The following theorem is from his work in number theory.

Pafnuty Lvovich Chebyshev

 Mathematical Preliminaries

 24
Created by XMLmind XSL-FO Converter.

 Theorem 4.17 (Chebyshev). There exist and positive constants such that

The most famous mathematical problem of 19th century was the Prime Number Theorem. It was solved

independently by Jacques Hadamard and de la Vallée Poussin in 1896.

Jacques Hadamard

de la Vallée Poussin

 Mathematical Preliminaries

 25
Created by XMLmind XSL-FO Converter.

 Theorem 4.18 (Prime Number Theorem 1896.).

Next we mention some interesting properties of primes and some classical problems.

 Theorem 4.19. All prime numbers can be given as the sum of four square numbers.

 Theorem 4.20. Given an polynomial, there are infinitely many positive for which

 is composite.

As we will see later finding primes, in case of big numbers, is not easy. It was always a dream for

mathematicians to construct an expression that will produce prime numbers given some parameters. We mention

two such attempts that are historically important.

 Definition 4.21. We call the numbers of the form Mersenne-numbers,

where is a nonnegative integer.

Marin Mersenne (1588-1648) was a French theologian, mathematician and physicist.

Marin Mersenne

It is worth noting that he attended the same Jesuit college where later René Descartes was also a student. We

call Mersenne-primes those Mersenne-numbers with prime exponent .

 Mathematical Preliminaries

 26
Created by XMLmind XSL-FO Converter.

In order to justify the appearance of Mersenne-numbers it is worth taking a small detour into the realm of

perfect numbers. If a number is the sum of of its divisors (not including itself) then it is called a perfect number.

For instance 6 is a perfect number since .

Euclid recognized that the first 4 perfect numbers are of the form

where is a prime. In these cases . The conjecture that all perfect numbers have this form

was proved by Leonhard Euler some 1500 years later.

Leonhard Euler

In Mersenne’s Cogitata Physica-Mathematica (1644) he wrote the false statement that for

 we get prime numbers, but for we get composite

numbers. Later Leonhard Euler (1707-1783) Swiss mathematician showed that indeed produces a

prime. This number was for more than one hundred years the greatest known prime. Later it turned out the

following list is correct: .

Up to now 47 Mersenne-primes were found. The last one was found in April 2009, where and

the number consists of 12837064 digits. There is a world-wide collaboration involving many computers for

finding further Mersenne-primes.

(For further details please visit: http://www.mersenne.org).

Further interesting numbers are the Fermat-numbers.

 Definition 4.22. Primes of the form , where is a nonnegative integer, are

called Fermat-primes.

Pierre de Fermat (1601-1665), French lawyer, did mathematics as a pastime activity with considerable result.

Pierre de Fermat

http://www.mersenne.org/

 Mathematical Preliminaries

 27
Created by XMLmind XSL-FO Converter.

The above problem is interesting enough but he is famous for these lines: “it is impossible to separate a cube

into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the second, into

two like powers. I have discovered a truly marvelous proof of this, which this margin is too narrow to contain.”

This short proof is still sought-after, but in 1995 Princeton Professor Andrew Wiles proved the conjecture, on

more than 100 pages.

Fermat did not put emphasis on proofs, so his conjecture that numbers of the form are always primes,

remained only a conjecture. In fact Euler in 1732 showed that 641 is a divisor of .

There are many open questions in this field. We still do not know whether there are infinitely many Mersenne-

primes and Fermat-primes or not. Is there any odd perfect number?

3. Congruences

The theory of congruences in its present form was worked out by Carl Friedrich Gauss in his Disquisitiones

Arithmeticae.

 Definition 4.23. If a nonzero integer divides the difference , then and are

congruent congruent modulo . Notation: .

 Theorem 4.24. Let and integer numbers.

(a) If and , then .

(b) If and , then .

(c) If and , then .

 Theorem 4.25. Let be a polynomial with integer coefficients. If , then

.

 Theorem 4.26. if and only if .

 Theorem 4.27. If and then .

 Definition 4.28. If , then we call the remainder of dividing by . The

 set of numbers form a complete remainder system modulo , if for arbitrary

integer there exists exactly one such that .

 Mathematical Preliminaries

 28
Created by XMLmind XSL-FO Converter.

 Definition 4.29. The set of integer numbers is a reduced remainder system modulo , if

; , when , and for arbitrary and for relative prime

we can find an from the set such that .

Notation: All reduced remainder systems contains the same number of elements. This number is

denoted by and we call it the Euler’s function.

 Theorem 4.30. is the number of those positive integers that are not greater than and

are relative primes to .

 Theorem 4.31 (Euler). If , then

 Theorem 4.32 (Fermat). Let be prime and assume that . Then

 Theorem 4.33. Let . If , then the congruence does not

have any solution. However if , then the congruence has solutions. These solutions are

the values

where is an arbitrary solution of

 Example 4.34. Let’s solve the following linear congruence!

Since and the congruence can be solved.

Solution:

The next statement is about simultaneous congruence systems consisting of more than one congruence system.

This was known by a Chinese mathematician named Sun Tzu more than 2000 years ago, hence the name of the

theorem.

 Theorem 4.35 (Chinese Remainder Theorem). If are pairwise relative

prime positive integers and are arbitrary integers, then the congruences

have a common solution. In this case any two solutions are congruent modulo .

Method:

 Mathematical Preliminaries

 29
Created by XMLmind XSL-FO Converter.

 Example 4.36. Choose a number smaller than 60, divide it by 3,4 and 5 and give the

remainders.

The chosen number is the remainder of divided by 60, assuming that the

corresponding remainder values are . Choosing 29 we get

.

Solution.

Then .

4. Finite fields

The work of Evariste Galois (1811–1832) was the starting point for the development of the theory of finite

fields. In the recent years it is strongly developed and it became a very important part for code theory or

cryptography.

Now we give a short introduction to the theory of finite fields.

 Definition 4.37. A group is a set , together with an operation (called the group law) that

combines two elements and the operation must satisfy three requirements

1.

The operation is associative,

2.

The set has an identity element, that is there exists an element , such that for every

element of satisfy the equation ,

3.

For each element of there exists an element of such that The

element is the inverse element of , it is denoted by .

 Definition 4.38. If the group operation is commutative, that is for every elements of

the equation is satisfied, then the group is called commutative group or abelian

group.

 Definition 4.39. A multiplicative group is called cyclic group, if there exists an element of

, such that for every elements of there exists an integer , such that .

Such elements of cylic group is called generator.

 Definition 4.40. Let and be binary operations on a set , they are called addition and

multiplication. A set is called a ring, if the two operations satisfy the following

requirements, known as the ring axioms,

1.

 is an abelian group,

2.

 Mathematical Preliminaries

 30
Created by XMLmind XSL-FO Converter.

distributive law is satisfied, that is and

 for all ,

3.

For all and elements of the equation holds, that is the

multiplication is associative.

 Definition 4.41. Rings which do have multiplicative identities, (and thus satisfy all of the

axioms above) is called unital rings. The multiplicative identies is denoted by 1 and the

equation is satisfied for all .

 Definition 4.42. A ring is called commutative ring, if for all and the equation

 is satisfied, that is the multiplication is commutative.

 Definition 4.43. A nonzero element of a ring is called a left zero divisor, if there is a

nonzero element , such that . Similarly can be defined the notation of right zero

divisor. A ring which has no left or right zero divisor is called a domain.

 Definition 4.44. A commutative domain with a multiplicative identity is called integral

domain.

 Definition 4.45. A field is a commutative ring whose nonzero elements form a group under

multiplication.

 Theorem 4.46. All finite integral domain is a field.

 Theorem 4.47. is a field if and only if is a prime.

For example , and are finite fields, but is not, since there is no multiplicative inverse of residue

class 3 in . The finite fields with elements are denoted by , where the notation is in honor of

Évariste Galois.

 Theorem 4.48. For all prime and natural number there exist a finite field with

elements.

 Definition 4.49. The characteristic of a field is the smallest natural number such that

for all elements (this is the addition in the field). If there is no such a number , then

the characteristic of the field is 0.

We remark that the characteristic of the ring is 3, the characteristic of the ring is 4 and the

characteristic of the ring is . The characteristic of the rings and is 0.

Easy to see that if is a field with characteristic , then there is a subfield in the field with

elements, the elements

are in the subfield. These elements are different, this set is closed under the multiplication and addition, for all

elements have additive inverse and all elements except zero have multiplicative inverse. There exists

isomorphism between the subfield with elements and , this way we can say that every finite fields with

characteristic is . The field with characteristic is the prime field of the finite field .

 is denoted the elements of the field except 0.

 Mathematical Preliminaries

 31
Created by XMLmind XSL-FO Converter.

 Definition 4.50. An element of is called primitive, if all elements of the field except

0 can be written uniquely as positive integer powers of .

 Theorem 4.51. Let be a finite filed with elements, then for all element the equation

 is satisfied, so all elements of the field is a root the polynomial .

The structure of finite fields can ve seen in the following theorem.

 Theorem 4.52. The multiplicative group of is a cyclic group.

 Theorem 4.53. There is a primitive element of all fields .

 Theorem 4.54. All finite field is a vector space over , if the vector space is an -

dimensional vector space, then the number of the elements of the field is , where is a

prime.

 Definition 4.55. Let be a finite field, the number of elements is called the order of the

field.

5. Exercises

1.

Solve the following congruences and .

2.

If we break eggs from a basket 2,3,4,5,6 by, it remains in turn 1,2,3,4,5, eggs. But if we removed the eggs 7

by, none remains in the basket. Give the number of the eggs in the basket. (Brahmagupta i.sz. VII.sz.)

3.

Find the residue of dividing by 9.

4.

Solve the following diophantine equations using congruence , and .

5.

Determine the greatest common divisor of 12543 and 29447.

6.

We have a 12 and 51 liter barrel. Can we fill up with these barrels a 5211 liter tank, if we always fill up the

barrels and we have to spill into the tank the whole contents of the barrels, and if the water don’t brim over

the tank.

7.

Prove that for all integer we have .

8.

Calculate the greatest common divisor of and using the Euclid’s algorithm, further

determine the coefficients and for .

9.

Is it a complete residue system or not ?

 Mathematical Preliminaries

 32
Created by XMLmind XSL-FO Converter.

10.

Reduced residue system or not ?

11.

Solve the following linear congruences system using the Chinese remainder theorem

 33
Created by XMLmind XSL-FO Converter.

Chapter 5. DES

Wholly until the 2000 the DES (Data Encryption Standard) had been the most widely used algorithm in

cryptography.

IBM began to run a research project at the end of the 1960s to develop a symmetrical encryption system that

uses secret keys. With the lead of Horst Feistal an algorithm had been developed by 1971 which was called

LUCIFER at that time. It divided the open text to 128 bites blocks and also used a 128 bites long key for

encryption.

LUCIFER was sold to the Lloyd Insurance Company in London that used it with a cash - distributing system

also developed by IBM. Carl Meyer and Walter Tuchman wanted to implement the hardware, operating the

LUCIFER algorithm, on one single chip for what they modified the algorithm a little bit.

Around the middle of the 1970 the NSA (National Security Agency) announced a competition to create an

algorithm that can be standardized. For this competition presented Carl Meyer and Walter Tuchman from IBM

their invented method which had been far the best from all the other tenders, henceforth it was standardized as

DES in 1977.

The system suited the tremendously developing word of data processing well. It provided a high level of

security yet that came from a simple structure. The hardware solutions are better than by software as DES

handles a huge amount of operations on the level of bites.

The algorithm possesses the so-called avalanche effect which means that a minor change in input means a major

difference in the output.

1. Feistel cipher

The DES algorithm can be appointed with the name Feistel cipher as well. This algorithm is a 64 bites block

algorithm that is a 64 bites encrypted block is assigned to a 64 bites block of the open text. The assignment only

depends on the key in use.

Every step uses the result of the previous step namely in an identical way but depending on the key. This step is

called a round and the parameter of the algorithm is the number of these rounds.

Let be the length of the block. Let be the coding function of key, which is called subkey and do not

have to be invertible. Fix a number (in case of Feistel cipher this is an even number) to the sequence, the

 key space and a method so that we may generate a key-sequence to any keys.

The coding function operates in the following way.Let be the long part of the open text space. Cut it

two long parts, that is , where is the left, is the right side. Then the sequence

comes in this way and

The operation that has been applied means the usual XOR operation. The level of security may be heightened

by rising the number of circles. The decoding process is the following:

Using this times with the key-sequence we get back the original text from .

 DES

 34
Created by XMLmind XSL-FO Converter.

2. The DES algorithm

The key-size of DES is 64 bites every eight is not included in use. The left bites are used for checking so the real

key-size is 56 bites. The number of DES keys is .

For example a valid DES key in hexadecimal form could be the following

or in binary exposition as the next chart presents:

 DES

 35
Created by XMLmind XSL-FO Converter.

In the first step we mix the bites of the input while in the last step we apply the invert of this process. In DES we

call it Initial Permutation (IP).

This is a bit-permutation for 64 bites vectors that is it is independent from the chosen key. The IP and its inverse

can be seen in the chart underneath. The interpretation of the chart is the following: If ,

, then .

Then we apply 16 round Feistel coding for the permutated open text. Finally the invert of IP provides the

encrypted text that is:

 DES

 36
Created by XMLmind XSL-FO Converter.

3. Coding the inner block

The alphabet is , the length of the block is 32 and the key-space is . Then we use a coding

function with a key . The part is expanded with a

function . This function is stated on the following illustration.

If , then . The next step is the reckoning of

and the division of result to 8 blocks. Let them be signed by (). The length of these is 6 that is

Hereinafter we use

functions (or S-boxes as they are called sometimes).

With the help of these functions we get the string

where . The length of these is 32. We also apply the P permutation on them so we get the .

4. S-boxes

The heart of the DES algorithm is composed of these boxes as they are (very) unlinear. Every single -box can

be represented by a table that consists of 4 rows and 16 columns. In case of every string

 can be calculated in the following way.

That integer, which binary form is , will be the row-index. The integer that stands for the binary

number will be used as the index of the column. We look for the appropriate value, state its binary form and if

necessary we may add some extra 0 for the length to be 4. Hereby we get .

 DES

 37
Created by XMLmind XSL-FO Converter.

For example determine . Then 01 marks the row-index and 0101 provides the column-index. These

just mean the 1 and 5 integers. In the first -box the proper cell value is 2 which binary form is 10 that is due to

the length 4 .

5. Keys

The final part is about how to generate keys. Let be a DES key. From this we generate the ,

 which are 48 long. We define the value in the following way:

The next algorithm and functions provide the key:

where the above functions are set according to the followings:

The algorithm:

1.

Let .

2.

Suppose that for every

a.

Let be the string, that comes from by a cyclical shift to the left position .

b.

Let the string, that comes from by a cyclical shift to the left with position .

c.

Let us define .

 DES

 38
Created by XMLmind XSL-FO Converter.

The PC1 function and , gives back two 28 long strings from the 64 long key. This can be seen well from the

table. For example if , then . The PC2 function provides a 48 long

string from a pair. For example .

We can decrypt a text that has been encrypted on the bases of DES by applying a reverse key-sequence coding

process.

Let us see the steps in the next figures.

 DES

 39
Created by XMLmind XSL-FO Converter.

6. Example for DES

Create the encryption of the open text with the help of DES. Its binary form is:

 DES

 40
Created by XMLmind XSL-FO Converter.

Apply the previously seen IP permutation to gain

that is

Use the DES key that became acquainted previously that is in our case which binary

form is

 DES

 41
Created by XMLmind XSL-FO Converter.

Let us figure the first key:

We get the key

Using the previous result we have

and

finally

The remaining turns can be calculated similarly.

Our program DES.exe will show you every details in the DES method.

7. The security of DES

prog/DES.exe

 DES

 42
Created by XMLmind XSL-FO Converter.

Since it had been invented the security of DES was examined. The DES had been attacked by special techniques

but no algorithm has been found until today that can break the system without possessing the key.

On the other hand, as the range of key scale is limited, with today’s calculating capacity the system is powerless

against the so-called brute-force attacks. In these cases we just simply check every possible key of decryption.

We can harden decryption by repeating the algorithm in succession. These methods are called TripleDES or

3DES. With the first one we use three different keys while in the second one two are identical from the three

applied keys.

As a regard of these it is essential to note that DES is not a group. This means if we have and keys we

have no keys in a way that .

Obviously otherwise the repetition of encrypting would not enlarge security. Finally we also have to mention

that not only the extreme growth of calculating capacity works against the DES but also our growing knowledge

of shared-systems. In cases where the certain task can be separated to parts, joint operation of computers lead to

the result in a very period of time.

 43
Created by XMLmind XSL-FO Converter.

Chapter 6. AES crypto-system

The word of Information Technology has changed a lot since the announcement of DES in 1976. The network

data traffic had grown so as the speed of computers and it was becoming obvious for professionals that it could

not provide the level of security as it used to do.

Now in the beginning of the 21th century we reckon that the lifetime of a crypto-system is around 20 years and

we also expect from this system to keep our secrets for another 10-50 years after its suspension.

In 1996 in the United States the National Institute for Standards and Technology had begun the preparations of a

new cryptographic algorithm. The expectations were published in 1997 and the algorithm got the name AES

(Advanced Encryption Standard).

The following expectations had been conceived of the new system:

1.

be a symmetric key block algorithm,

2.

use 128 long blocks,

3.

work with 128–192–256 bites key–size,

4.

be faster than 3DES and provide better security,

5.

use the resources of the computer effectively,

6.

be flexible in adapting the possibilities of different platforms.

Great companies and research groups took part in the challenge such as IBM, RSA laboratories, Nippon

Telegraph and Telephone Corporation. The final winner was announced three conferences, several examinations

and breaking attempts on 3rd October in 2000. The winner of the competition was the Rijndael symmetric key

algorithm that originated its name after the creators Vincent Rijmen and Joan Daemen.

Vincent Rijmen

 AES crypto-system

 44
Created by XMLmind XSL-FO Converter.

Joan Daemen

The algorithm fulfilled all the above mentioned expectations. it is worth mentioning that the algorithm is not

under copyright laws. It is very stable and resists all kinds of present day attacks. The only way is to try all the

possibilities or in other words brute-force attack.

1. Basics

The Rijndael method combines substitution and linear transformations. Its main advantage is that the creation of

roundkeys is fast and they can be multi-processed that is obviously an or advantage as far as speed is concerned.

The repeating circle functions consists of four independent transformations which from this point are called

layers and defined hereby.

1.

The linear mixing layer provides a high intense mixture of the boxes. The MixColumns layer (combined in

the level of columns) while the ShiftRows operation can be combined on the level of rows.

2.

The non linear layer uses only a single S-box and the SubBytes layer can be combined on the level of bytes.

3.

The key addition layer makes the final result depend on the key. The method uses a simple XOR operation

and in each round a different Roundkey. The AddRoundKey layer can be combined on the level of bytes. We

also note that the other layers are independent from the key.

 AES crypto-system

 45
Created by XMLmind XSL-FO Converter.

In case of AES 128, being examined by us, the round functions have to be repeated ten times. From the first one

9 rounds must be done, while only one from the second. The in- and output data is stored in a so-called State

structure.

1.

Round (State, Roundkey)

a.

SubBytes (State)

b.

ShiftRows(State)

c.

MixColumns(State)

d.

AddRoundKey(State, RoundKey)

2.

FinalRound (State, RoundKey)

a.

SubBytes(State)

b.

ShiftRows(State)

c.

AddRoundKey(State, RoundKey)

The last round is a little bit different from the others as one layer is left out. In the brackets we can see when to

use the key and when not.

In order to understand the algorithm some expressions may be needed. Word means 32 bits, block size ()

means the size of the blocks expressed by words in this case . Key-size () stands for the size of the

key also expressed by words, again. The number of rounds depends on the block- and key size as well,

in our case, as mentioned above, it means 10 rounds .

2. Layers of rounds

2.1. The State

The state structure can be illustrated by a 4x4 square where each square represents one byte.

 AES crypto-system

 46
Created by XMLmind XSL-FO Converter.

When upload the state structure, the key and the encrypted document, the way to follow is from up to down

from right to the left. The column vectors of the state structure may be considered as words.

2.2. SubBytes transformation

The SubBytes transformation uses a non-linear invertible S-box, each byte is replaced with the same S-box. The

following presents the rules of operations, where means the th bit of the given byte and is the th bit of the

 binary digit, where .

In the following equality operations are defined on the level of bits, where the numbering of bits is the usual

right to left.

In every case the letter marked with a comma provides the varied value. The values can be calculated in

advance, the used S-box can be found in hexadecimal form in the FIPS notice [4]. The process can be imagined

this way:

The chosen letter pair is in one row. Obviously the InvShift Rows invert operation contains the very same steps

in reverse order.

2.3. ShiftRows transformation

The ShiftRows transformation is the simplest layer. In the ShiftRows transformation, the bytes in the last three

rows of the State are cyclically shifted over different numbers of bytes. The first row, , is not shifted, the

second row, , the third row, and the forth, .

These steps are similar to the steps of Playfair cipher. Obviously easy to see the InvShiftRows transformation.

 AES crypto-system

 47
Created by XMLmind XSL-FO Converter.

2.4. MixColumns transformation

The less difficult the ShiftRows transformation has been, the more complicated the MixColumns transformation

is, which of course makes us happy as an outstanding symmetrical method should deploy brave ideas.

In order to understand the essence of these layers, some mathematical knowledge has to be acquired. As a

matter of fact the working of AES is based on operations on byte level that has been seen by the previous layers.

Let the bits of byte be and corresponds polynomial is the following

The coefficients of these polynomial are either 0 or 1 so such polynomial equivalent to any 8 term long bit

sequence.

For example the {10000011} bit sequence, the {10000011} hexadecimal number and the

polynomial are equivalent.

In these cases addition between the polynomials is corresponds the exponents of the identical powers are added (

).

For example if we add the polynomial to the previous one, we get the

 polynomial. Using the binary notation we get the following equality

The result is the same if we do the addition on byte level with hexadecimal numbers . In

other words the AES algorithm uses the finite field to define the MixColumns layer.

Now let’s see the multiplication. We may need the irreducible polynomial that was used by AES algorithm

 (see [4]). In hexadecimal mode, defined by us, this would be the following

. Henceforward the operation means the remainder of the product of two polynomials

dividing by .

Applying the above mentioned method and using hexadecimal style we get that . Its truth

can be proved by performing the usual multiplication first. Naturally we take care of executing the additions in

the defined way,

In the next step do the division with remainder with an irreducible polynome that is used in AES algorithm,

where we gain the foreseen result

We already know that modulus creation had been an outstanding way to confuse the regularity in the vector in

Knapsack method. There is no difference here and no other binary operation that would provide the gained

result, so it is an excellent idea.

We note that the result after division is at maximum 7th degree so the coefficients can exceedingly be illustrated

on one byte.

The operation is associative and the identity element in the structure is . The invert of any binary

polynomial under 8th degree can be determined by the expanded Eucledian Algorithm.

Now only one thing is missing from our discernment. Let’s see what happens if polynomial is multiplied

by the polynomial. At first multiply with to gain:

 AES crypto-system

 48
Created by XMLmind XSL-FO Converter.

The operation orders the configuration of modulus with the resulted polynome. If we

have no job as the modulus configuration changes nothing. If , subtract the polynomial from the

given polynome or simply XOR it with .

We can see that with the polynomial the multiplication is simple, the coefficients of the presented

polynomials are shifted one place left and if the value from the byte is 1 we XOR the number with {1b}. This

method is called xtime() operation in the documentation of Rijndael system. The operations with higher powers

can be done easily by possessing the acquired knowledge.

The MixColumns transformation converts the bytes of state structure in all cases in a way that the bytes are

multiplied by the predefined polynomials as above introduced. Each new byte depends on all bytes in the

column of the original byte. Evidently any minor changes in one byte results in a major change of the entire

picture. The following equations defines the columns:

Equations, similar to the ones above, defines the InvMixColumns command that has to be used in case of legal

decryption. This operation, as it turns out from its name, is the invert of the MixColumns operation. The

operation defined hereby equals the previously introduced operation.

2.5. AddRoundKey transformation

This layer makes our encrypting method depend on the key. The operation itself is far easier than the formerly

reviewed MixColumns. The operation is a simple addition (XOR) between the pre-set structure and the bytes of

the roundkey.

From the provided secret key the algorithm makes a long, a so-called expanded key. At the beginning of the

expanded key stands a copy of the original secret key then every other words can be originated from the

previous words.

A roundkey contains words, in our case 4, and we need roundkeys including the secret key. In case

of AES- 128 the length of the roundkey is that is 44 words.

 AES crypto-system

 49
Created by XMLmind XSL-FO Converter.

In all cases the expanded key has to be divided into the same size of pieces as the state-structure. The ordering

process has to be handled carefully because the first roundkey that is the first number of words belongs to

0th circle while the second roundkey that is the second number of words to 1th circle.

Continuing this implicitly we gain the further correspondents. In the roundkey the words belongs to first,

second, third and fourth columns in an order which also sets the order of performing the XOR operation. The

steps are described by the following equality:

where the expression round means the number of the actual round and the vector will be explained soon.

To fully understand the process of generating roundkey we need to introduce two more functions. Both the input

and the output of the SubWord function is a 4 bytes long word. We imply the S-box of SubBytes on every four

input byte. The output of the RotWord function is also a 4 bytes long word that changes the letter

order into .

An invariant (Rcon[i]) belongs to each round which, according to the previously introduced forms, is

determined by the term, where raising the power occurs according to the way

introduced in this chapter.

Keeping the hexadecimal signs is marked by . the starting value of index is 1.

The first words of the expanded key contain the secret key, every further word, let it be marked by , is

provided by the XOR operation executed between the preceding , and the times earlier words.

In case of those words which position is the multiples of , the result is given by a XOR operation between

 and Rcon[i] of which henceforward the SubWord and SubBytes operations will be applied.

The above introduced is a 4 bytes long word where .

Now every detail has been cleared. We set a secret key in the Rijndael encrypting algorithm then create the

expanded key. After that we engage in the th round the Round function, introduced at the beginning of

the chapter then we establish the encrypted image by a FinalRound function.

aes.msi

During decryption we use the inverts of the encrypting algorithm. In order to manifest the propriety of the order

clearly, we write down the order, applied during encryption, again.

 1. AddRoundKey (State, 0. roundkey)

 (a) SubBytes (State)

 (b) ShiftRows(State)

 (c) MixColumns(State)

 (d) AddRoundKey(State, 1. roundkey)

 9. AddRoundKey (State, 8. roundkey)

 (a) SubBytes (State)

 (b) ShiftRows(State)

 (c) MixColumns(State)

 (d) AddRoundKey(State, 9. roundkey)

prog/aes.msi

 AES crypto-system

 50
Created by XMLmind XSL-FO Converter.

10. FinalRound (State, RoundKey)

 (a) SubBytes(State)

 (b) ShiftRows(State)

 (c) AddRoundKey(State, 10. roundkey)

And here is the inverse order

 1. AddRoundKey (10. roundkey)

 (a) InvShiftRows (State)

 (b) InvSubBytes(State)

 (c) AddRoundKey(State, 9. roundkey)

 (d) InvMixColumns(State)

10. FinalRound (State)

 (a) InvShiftRows(State)

 (b) InvSubBytes(State)

 (c) AddRoundKey(State, 0. roundkey)

It is also obvious from the description that AddRoundKey layer is its own invert.

As it seems the AES deserves the place in the word of cryptography that was intended for. It works well on

different platforms and the level of encryption provided by AES also hits the expected standards. It appears that

at present there is no better option to break it than brutal force, a systematical check of possibilities.

3. Secret communication

The AES algorithm, introduced in this chapter, is a symmetrical algorithm that contains a key-dependent part

which is also the token of security. On the other hand the keys have to be shared with the participants, which is

not always an easy task.

If we have the possibility to work with a physically stable channel the task is considered quite simple as the

intruder can only access our secret key by abusing the channel. This method can exceedingly be resolved in case

of small distances but for large distances it is not worth to be chosen as safety cannot be guaranteed and it is

even expensive.

The secured channel has no physical protection so the attacker may contact the channel and also endanger the

safety of data processing. Several different protocols are used for communication that guarantees the

invulnerability of our data.

It is easy to see that in case of number of communicating partners we need keys if we would like to

provide a key to every possible pair. This makes a considerably large numbers of keys necessary to generate in

case of large number of partners and when using the symmetric method every participants has to agree each

other. The obviously complicated negotiations are unnecessary due to the use of asymmetric keys.

Worthy of note that we can agree to sue a common key without a pre-arranged key change, an example for this

is 3-Way cryptography.

Imagine the process as two participants, Alice and Bob, would like to communicate. The message is meant to be

sent in a box and both of them possess a padlock and naturally a key.

 AES crypto-system

 51
Created by XMLmind XSL-FO Converter.

Firstly Alice puts the message into the box and locks it with her own padlock. Bob also puts his padlock onto

the box and sends it back to Alice. Alice takes off her own padlock and sends the box back to Bob. Finally Bob

takes off his padlock and gets the message.

The message was sent securely in both cases as it had a padlock on it and the participants did not need to send

the keys. There was only one condition for the method to work that the encrypting and decrypting methods must

have been compatible that is:

4. Exercises

1.

Determine which polynomials belongs to {2A} and {75} hexadecimal numbers according to the

representation introduced in the chapter.

2.

Determine the value of the operation xtime({57}).

3.

Let and are given polinomials. Determine the value of

 and !

4.

Let , and elements of a column.

Give the result of MixColumns operation.

5.

The (Rcon[i]), applied in AES and using the previously introduced style, can be written as

. Keeping the hexadecimal form is represented by . Determine the values in

cases , and .

 52
Created by XMLmind XSL-FO Converter.

Chapter 7. Knapsack

We saw in the previous section that classical cryptosystems are vulnerable to skillfull and sometimes lucky

codebreakers. If we know the method and cipher key then we can easily get to the original message. Therefore

the research for finding better methods continued in order to pose greater difficulties for the illegal intruder.

Therefore the research must have continued in order to find cipher methods that pose bigger challenge for the

illegal intruder.

In 1970s Ralph Merkle, Whitfield Diffie and Martin Hellman suggested a new type of encryption method, the so

called public key cryptography.

Ralph Merkle

Whitfield Diffie

Martin Hellman

 Knapsack

 53
Created by XMLmind XSL-FO Converter.

They wanted a cipher that is very difficult to break even if the encryption key and the method is known. Of

course the method is not really a big hit if decryption is also demanding for the intended receiver. The solution

is that we keep a tiny bit of information hidden from outsiders, and that extra information enables quick

decryption.

For the mathematically versed readers it is immediate that the term “very difficult” is not a well-defined notion.

If we want to make this precise then we have to go into the problems of complexity theory a bit deeper. There

are many good books in this topic (for instance [6], [10]).

Next we take a small detour to get some impressions on what is meant by “easy” and “difficult”. The time

complexity of an algorithm is a function of the length of the input data. Roughly speaking, the given algorithm

has time complexity if for an arbitrary input of length the computation finishes after at most steps.

Following J. Edmonds and A. Cobham, we say that there are two main classes of algorithms. The “good”

algorithms are when the previous time complexity function is polynomial, and the “bad” ones where it is

exponential.

In the first case is of the form , while in the second case it is , where are appropriate

constant values. (It is important to note that the there can be “good” algorithms according to the definition that

are practically incomputable, for instance , and vice-versa can be

computed quickly for many though it is “bad” by definition).

Let’s denote the class of problems that can be solved in polynomial time by . For the algorithms with

exponential time complexity we use the notation . This comes from the fact these difficult problems can be

solved in polynomial time if we use a hypothetical machine that computes all possible branches of the algorithm

at the same time (nondeterministic).

It is still an unsolved problem whether or . The intuition favours the second case but a

proof has been elusive so far. It is clear that problems in are in as well. For the other direction our

conjecture is that it is not true. However, in order to prove that we have to show for every difficult problem that

it actually cannot be solved by an efficient algorithm.

There is further trouble, since those problems in , that we think they are not in , usually have the same

level of difficulty.

A problem in is -complete if solving it in polynomial time would imply that all problems in can

be solved in polynomial time. It turned out that all the problems we can consider are -complete. (Note that

integer factorization is thought not to be -complete.) Some of this type of NP problems:

1.

 Knapsack

 54
Created by XMLmind XSL-FO Converter.

(Packing Problem) To put a given set of differently sized and shaped items into the least possible number of

fixed size boxes.

2.

(Travelling Salesman Problem) Given a set of cities, we would like to visit them all. What is the

shortest/cheapest route?

3.

(Assignment Problem) Given sets of courses, students and lecturers construct a timetable with no collisions.

After these considerations we can imagine the design of a cryptosystem.

Choose a “difficult” problem, i.e. a problem not in . Take a base problem of this problem (denoted by),

meaning that it can be solved in linear time.

Then with some mathematical method we “shift” this problem to problem , which resembles to the original

difficult problem. We publish and hide the way of getting back to as a secret trapdoor.

Thus the intended receiver needs to solve an easy problem, why the illegal user faces a difficult one.

Typically we know very little about the underlying problems of public cryptosystems. Probably these problems

are -complete or more complex, for example, integer factorization, determining primality, or finding primes

of certain size.

1. The Knapsack Problem

The first problem that makes the public encryption method possible is the so called Knapsack Problem.

Mathematicians are interested in this problem even without its cryptography applications. The task is to put

many different small items into a knapsack but we would like to have it as full as possible so we need an

algorithmic method for deciding what to put into the knapsack.

It is clear even for the first reading that if we have many items and a large knapsack we will need long time for

coming up with an optimal solution.

Formally, let be a vector containing positive integers and also a positive integer. We

need to determine a set of values such that their sum is . We can surely get the result by the trial and error

method so we need at most attempts. In case of 10 items it takes only 1024 checks. However, for 300 pieces

we already face a “difficult” problem.

 Knapsack

 55
Created by XMLmind XSL-FO Converter.

For cryptography applications we definitely need a case of the Knapsack Problem for which the packing is

simple. We can imagine such a convenient situation.

Let each item be of such a size that the sum of the preceding items in the list fit in but does not fully fill. In this

case the packing is simple. We need to take the biggest possible item that fits into the knapsack. It is clear that if

we leave out this one, all the remaining can fill up only less amount of space. Then for the remaining available

space we take again the biggest available item and we continue similarly. In a few steps it becomes whether an

exact packing is possible or not.

In 1982 Ralph Merkle constructed a public key cipher method based on the Knapsack problem. He bet 1000

dollars that the code is unbreakable.

For the more exact treatment we need the definition of super-increasing vectors. In the followings we assume

that the lowercase letters indicate positive integers.

Let the vector be super-increasing, if all elements of the vector is greater than the sum

of preceeding elements, i.e.

Let’s see now the underlying idea. For the sake of simplicity we assume that we would like to encrypt the

pairs of symbols and we have a super-increasing vector of size 10, .

Let symbol correspond to and to . Similarly for other symbols of the alphabet we use the 5 bit

binary representation of the code number of the letter. Thus for the pair we have the

vector.

Next we calculate the dot product of and . Clearly, only those components of the super-increasing

vector contribute to the product that have a corresponding 1 in the other vector. Therefore we get an integer

number, from which only those could get back the encrypted message, who know which components of the

vector are in the sum. Then we can give a bitvector, in which we have a 1 if the corresponding element of is

in the sum, 0 otherwise. After that, reconstructing the message is just a simple decoding step.

For super-increasing vectors this task is a simple one. Following the previously mentioned method in the general

case we can do the following. Given an super-increasing vector and assuming that the

coded message (consisting of 0s and 1s) is exactly an dimensional rowvector. Let’s denote the value of the

 dot product by . Deciphering then goes this way: we check whether the inequality holds or not. If

yes, then last component of the vector is a 1, if not, then that component is a 0. Then is defined by

Continuing similarly to we get the 1s and 0s. These are going to be the coded symbols. Decoding can be done

easily by a lookup table.

Clearly, if the vector is public then encryption is very easy. From now on we talk about the solution of the

 problem when we decompose an number as a sum of the components in the vector.

The trouble is that the encryption is also very easy for the illegal user as well, and that contradicts our goals.

We have to investigate how we can “damage” the vector in a way that it does not look super-increasing any

more, but we can reconstruct the original vector. This would fulfill the aim of public key coding since

decomposing a number over an arbitrary number is indeed a very difficult problem, given that the components

are big enough and there are sufficiently many of them.

 Knapsack

 56
Created by XMLmind XSL-FO Converter.

These informally defined notions mean that we need to choose a vector such that selecting the components for

the sum would take disproportionally long time. For the illegal user it is difficult, but for the person knowing the

super-increasing vector it is very is easy to calculate the solution by using the previous method.

Let choose a natural number such that

This is obviously much bigger than any since was a super-increasing vector. Let be a natural number

such that . We call the modulus and the multiplier.

From the choice of it follows that there exists a natural number such that

After these choices we calculate products and reduce them , thus we get

values . The resulting vector is then a public key. is not super-

increasing, therefore despite knowing the public key decryption is still troublesome.

The series of operations on the vector is called strong modular multiplication with respect to and . The

secret trapdoor consists of the and values. With these the legal user can easily get the vector from

. At the same time the “preimage” can also be calculated from the value yielded by the encryption process.

This then can be deciphered based on . To show the correctness and the usage of the method we have the

following theorem:

 Theorem 7.1. Let be a super-increasing vector and derived from

 by strong modular multiplication with respect to and . Furthermore let

, arbitrary positive integer and

Then the following statements hold

1.

The Knapsack problem can be solved in linear time. If a solution exists, then it is

unique.

2.

The Knapsack problem has at most 1 solution.

3.

If there is a solution for the problem, then it is the same as the solution for .

Proof. The first statement are obvious from the algorithm given above.

For the third statement let’s suppose that there exists an -bit vector which is a solution for

the problem, i.e. . Thus

Since is greater than the component sum of the inequality holds. Moreover

 also holds due to the definition of . Clearly follows, which means that

is the same as the unique solution of the problem. This proves the second statement as

well. □

 Knapsack

 57
Created by XMLmind XSL-FO Converter.

Ralph Merkle lost the 1000 dollar bet. Adi Shamir immediately broke one version of the code, but this was not

enough for winning.

Adi Shamir

In 1985 Ernest Brickell succeeded to find a quick algorithm for the Knapsack problem, therefore he succeeded

to break the previously described cipher method.

 58
Created by XMLmind XSL-FO Converter.

Chapter 8. RSA

In the 1970s computer engineers were more and more involved in the issue of key-sharing. The evolution of

computer networks had begun and foreseers recognized that sharing the keys would be the most burning

question in the future of information technology.

Only a few scientists took part in this utopian challenge as Withfield Diffie, Martin Hellman and a little bit later,

Ralph Merke. They tried to find such functions which were called one-direct functions that is where it is easy to

count from one direction but almost impossible from the other. To be more accurate, for proceeding backwards

we need some extra information. As a matter of fact their ideas had created the basics of asymmetric key

cryptography. They developed the Diffie–Hellman key exchange method which did work although not perfectly.

They continued their researches on Stanford University, were still looking for that one-direct function which

would make asymmetric key cryptography become a reality. His dedicated job can be the best described by a

sentence from Martin Hellman. “God rewards the fools”

A well - respected figure of number theory, G. H. Hardy (1877 - 1947) wrote the following about his work: “I

have never done anything ’useful’. No discovery of mine has made, or is likely to make, directly or indirectly,

for good or ill, the least difference to the amenity of the world. I took part in the qualification of new

mathematicians, mathematicians like me, and their job – or the part of it that can be ascribed to my help – has

been so far as pointless as mine. Judged by all practical standards, the value of my mathematical life is nil; and

outside mathematics it is trivial anyhow.”

G. H. Hardy

There may be several aspects in this outstanding mathematician’s viewpoints to argue with, but in the distance

of half a century it would not be wise to do so. The reason why these lines were eager to appear is the interesting

fact that the materialization of public key cryptography led the scientists to ’the queen of mathematics’, number

theory and made them benefit from the ’useless’ science of Hardy.

1. RSA

Researches continued for the sake of public key cryptography and the new ideas were originated from the world

of primes. We may consider the factorization of a composite number to be an easy task. This thought tends to be

correct if the given number is not large. But the summary of complexity theory from the theoretical

mathematical part point out that this concept becomes invalid if the number is large enough. In other words, no

algorithm is known that can operate factorization fast. Hendrik W. Lenstra Jr. dropped the following funny

remark: “Suppose that the house - keeper accidentally threw out the p and q numbers, but the pq product was

left. How can we regain the factors? We can only read it as the defeat of mathematics that the most appropriate

way to scavenge the junkyard and use memo- hypnotic techniques.”

Ted Rivest, Adi Shamir and Leonard Adleman worked in the IT laboratory of MIT and knew the researches of

Diffie, Hellman and Merkle and they would have been eager to create the one-direct function dreamed by

 RSA

 59
Created by XMLmind XSL-FO Converter.

others. After a fine celebration of Easter, in April 1977, Rivest found the answer and published it with his co-

workers which opened brand new ways of cryptography. After the capitals of their names the method is called

RSA. We are able to hide the key from uninitiated eyes with the help of Fermat’s little theorem. Hereby we

detail the encrypting method.

Ted Rivest, Adi Shamir and Leonard Adleman

Let and be different prime numbers, in general we choose decimal numbers with a hundred or more digits.

Let be the number of positive integers, smaller or equal to and relatively prime to .

Then if , the following equation is true

 is called modulus in the followings. Choose an integer in a way that and determine the

integer where and fulfills the congruence

After having these values, we code the chosen text and encrypt the given value. the encrypted text is

defined by the next equation

(We note that decimal numbers are used in general for coding. The gained number sequences are divided into

blocks and encrypted separately. We usually use long blocks where .)

After finishing the encrypting process we are engaging the issue of decryption. The next theorem shows the way

of decryption.

 RSA

 60
Created by XMLmind XSL-FO Converter.

 Theorem 8.1. Using the previous notation, the following congruence is fulfilled

Hence, if decryption is unique then .

The theorem is proved with the help of Euler’s theorem.

Proof.

According to the choice of the previously defined , such exists, where

First we suppose that neither nor divides . According to Euler’s theorem the following

congruences are true,

So we have

If exactly one of and , say divides , then we obtain that

Finally we have

Since this last congruence is valid we have proved this case.

Similarly we can prove the case when and divide . □

So the theorem, proved by us, shows that if we rise the encrypted text to the th power, then reduce it ,

we gain the original text.

We note that by designing the system, it is essential to determine the relative primality and . This can be

done in linear time with using the Euclidean algorithm. Our next task is to determine the value of satisfying

the congruence

It is easy to recognize that such decrypting exponent exists. As there exist and integers

such that

From this equation we get that

that is .

A simple example can present how the RSA works. Let Alice choose the prime, and numbers.

Then her modulus will be and in our case . Let be the

encrypting exponent from which the decrypting exponent can be determined. Bob’s similar choices are

the following, , so , and and .

 RSA

 61
Created by XMLmind XSL-FO Converter.

Imagine that Alice would like to send a message to Bob, at present the word ”TITOK”. He applies the RSA

method on each letters that is she defines the value

The ASCII code of letter T is 84, Bob’s public key is 65 and his modulus is 247 which is also public. So Alice

calculates the value

and the encrypted image of T will be 145.

We follow the same pattern in case of every letters. the results are indicted in the chart below.

Now as the method has been introduced the question arise what is public and what has to remain hidden. We can

publish the modulus and the encrypting exponent by this system. The numbers and represents

the hidden trap-door which means, either of them is known the system is broken.

The RSA algorithm was under copyright law until 2000 in the United States. Today, anybody can create

software or hardware tools, operating with RSA algorithm, without paying licence fees.

The PGP (Pretty Good Privacy) system was invented by Philiph R. Zimmermann using the RSA method and

nowadays everybody can use (see [18], http://www.pgpi.org/).

The RSA attains safely the dream of Diffie and Hellman, the key change, as the role of and can be reversed.

RSA is the most known asymmetric encrypting method nowadays and as DES also a block algorithm. Under the

length of the RSA’s key we always mean the length of (usually bits). For the sake of security it

is advisable to generate the key from approximately equally large primes. Some pragmatically essential details

will be mentioned later.

It is essential to note that RSA becomes breakable if we can factorize the number. This can obviously be done

as it requires only enough time and calculation capacity, but with today’s mathematical knowledge and

calculation capacity this is a huge demand and decryption is not possible within reasonable time.

Interestingly, after the announcement of RSA in 1977 Martin Gardner, American mathematician and author of

popularizing popular sciences, published in the mathematical games heading of Scientific America journal an

article titled, “A new kind of cipher that would take millions of years to break”.

Martin Gardner

 RSA

 62
Created by XMLmind XSL-FO Converter.

Here he explained the method of public key cryptography to the readers and provided an modulus which he

used to encrypt a text. In his case n = 114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242

362 562 561 842 935 706 935 245 733 897 830 597 123 563 958 705 058 989 075 147 599 290 026 879 543

541.

The task of the readers was to factorize n and decrypt the text. He offered a 100 dollars price to the winner.

Gardner suggested that to understand the RSA the participants should turn to the IT lab of MIT. We can imagine

the surprise of Rivest, Shamir and Adleman when they received more than 3000 letters.

Gardner example had only been solved 17 years later. In 26th April, 1994 a group of 600 volunteers announced

that the factors of N are the following, q = 3 490 529 510 847 650 949 147 849 619 903 898 133 417 764 638

493 387 843 990 820 577 and p = 32 769 132 993 266 709 549 961 988 190 834 461 413 177 642 967 992 942

539 798 299 533.

To tell the story as a whole, the decrypted text was: “The magic words are squeamish ossifrage.”

The factorization task was divided on the computer network using every free capacity. We note that the search

for Mersanne primes follows the same pattern.

17 years may seem to be a short period of time but we have to understand that in case of Gardner we only used a

modulus of the order of which is far smaller than the currently suggested modulus where we have to

consider billions of years.

Anyway, it is just a nice story and has nothing to do with banks or military secrets yet illustrates well our remark

about time limit. To break the RSA the intruders would need a fast way of factorization. We do not have such

method for the time being. The algorithm works well but stands on weak legs in the sense that it is not proven

whether a polynomial time factorizing algorithm exist.

Moreover it is also unknown if such algorithm exists that can break RSA without factorization.

The fact that the encrypting and decrypting key can be reversed makes the Diffie–Hellman method possible to

realize. Let us suppose that Alice and Bob would like to choose a common key so they publicly agree in

choosing a modulus and a generator which are 195–512 bits long.

The term, generator means that all the numbers smaller than have to be generated by the formula .

After that, both of them choose a random number smaller than . Let them be and . Then the following

steps occur:

 RSA

 63
Created by XMLmind XSL-FO Converter.

1.

Alice send Bob the value ,

2.

Bob sends back in his answer,

3.

Alice calculates ,

4.

Bob calculates ,

5.

Their common key is .

It is known that the equation is solvable over real number field using the logarithm function. But we

have problems when we involve computing in modular arithmetic in RSA public-key cryptosystem. We have a

small chance to determine .

More generally let and elements of the finite group . If is a solution of the equation , then

is called a discrete logarithm to the base of in the group .

Obviously every element discrete logarithm to the base if and only if cyclic group and is a

generator. The discrete logarithm problem is an NP problem.

A modified version of Diffie–Hellman method is the ElGamal method, which was published by Taher Elgmal in

1984.

Let and the generator of is known for the two participiants. Then A chose secretly an integer

 and publish (obviously it is element of).

We send our message to A in the following form , where is an arbitrary positive integer

number. Obviously since a discrete logarithm problem is difficult the illegal intruder can not obtain valuable

information.

When A get the message, can be calculated and in this way also.

The discovery of RSA is a serious feat of arms, a beautiful result of human mind and the ability of working

together. On the other hand it is also interesting in its history. For the sake of completeness we would mention

that according to the British government, public key cryptography was firstly invented in a top secret institution,

built after WWII, in Cheltenham, in the so called Government Communication Headquarters (GCHQ).

We could learn subsequently that British scientists, James Ellis, Clifford Cocks and Malcolm Williamson had

developed all the basic theorems of public key cryptography by 1975, but they were ordered to stay quiet.

These events demonstrate well that we are challenging an exotic border of sciences, where the new inventions

are kept in secret, because the secret knowledge means steps forward for the given government. Unfortunately

in these cases, the fate of humans becomes secondary.

2. Pragmatic comments

At first we have to face with the issue of finding primes with a 100 digit. Now the problem of searching and

determining the primality also arises. The search for large primes is in process at the moment and they are

possibly not published because of being classified.

 RSA

 64
Created by XMLmind XSL-FO Converter.

The searching process operates in a way that we choose an appropriately large odd number (in or case 100

digits) then with the help of some primality test, which will be introduced later, we decide whether the given

natural number is a prime.

If the answer is no, we give a try to the following odd number. According to the Prime number theorem there

are about

primes with 100 digit.

This implies that in case of any odd number, the chance of a successful test is 0,00868.

The next problem is choosing . After selecting and we have to set . It is important that must not be

small as it may lead to the break of our system.

The chosen can be tested with the Euclidean algorithm. If our choice was good and satisfies the

 condition, we have found the appropriate one so the number can be read from the equations of

the Euclidean algorithm.

We need to define the term for both decryption and encryption. We may do this operations a lot

faster if instead of multiplying a with itself and then reduce it, we follow the so-called successive squaring

method and after each operation we reduce the given number . The method is the following.

At first we regard the binary representation of , in our case

Using successive squaring we can easily determine the values

From this the expression , which is necessary to us can easily be calculated.

At maximum multiplication and reduction is required for the calculation to be done.

Let’s see an example of successive squaring. Give the value of . According to Fermat’s theorem

we have

So it is enough to calculate the value of . For the successive squaring process we pre–create

those powers of 7 where the exponent is in the form and the final result is got by . The results are

summed in a table:

Now, the wished result comes from an easy calculation if we now that the binary form of 23 is 10111 we have

 RSA

 65
Created by XMLmind XSL-FO Converter.

Let’s see how it works in practice. Code the letters after their ordinal numbers unlike previously where the code

was in accordance to ASCII value. Encrypt the letter pair SA which equals 1901 and the UN letter pair which is

2114 and suppose that the encrypting exponent is 17. The following chart shows the successive squaring step-

by-step.

Further attention is required if we would like to create an ambitious system which is difficult to decrypt. We

must keep clear and of being close to each other. If and are close then is small and

is not much larger than . Moreover, the left side of the next equation is a full square

With the help of this information we may factorize by testing such where and continue the process

until is not a full square.

If we sign this full square with , the equations and give the factors.

During planning we have to pay attention to the behavior of . If the greatest common divisor of and

 is large, their least common multiple, let us denote by , is small compared to .

In this case, all inverse of can be used as decrypting exponent. In this case it is easier to find so

we have to keep in mind that should not be large.

To avoid the above mentioned problems we generally use so so called strong primes which features are the

followings:

1.

the chosen prime is large, at least 400-500 bit long,

2.

the greatest prime divisor of is large,

3.

 RSA

 66
Created by XMLmind XSL-FO Converter.

the greatest prime divisor of is large,

4.

the greatest prime divisor of is large.

However, the researches of R. Rivest and R. Silverman proves ([16] that some new factorizing methods (for

example Lenstra’s method based on Elliptic curves) can be efficient in case of strong primes as well. So the

strong primes do not solve all the problems either, but apart from this RSA provides a reliable level of secrecy

nowadays.

In this part of the chapter we discuss practical issues, so let’s drop a few words about every day use. Although

successive squaring fastens the execution of the chosen mathematical operations, the speed of RSA continues to

be inappropriate in every - day life. Therefore, the whole text is rarely be encrypted with open key algorithm in

practice, especially if the text is long, but with traditional symmetric algorithms which are hundred times faster

than RSA.

So called Hybrid cryptosystems which uses public key cryptography are also often used. The common process is

that the text is encrypted by a fast secret key algorithm and the randomly generated key of it is encrypted by

public key method and these two are sent together. Such occasionally or only once used keys are called session

keys. Naturally, in this case the public key algorithm protects only the key so can provide help in key sharing.

So when attaining the hybrid system we must pay attention to the symmetric algorithm because if it is breakable

we protected our key for nothing.

3. Digital signiture

Digital signature is a very commonly used expression nowadays, yet it is not well known what it means. Digital

signature was originally created to replace the traditional hand-written signatures but also fulfill the present day

standards of IT.

The digital signature itself is a number that strongly depends on the private key (which is also a number) of the

signing party. It also depends on some public parameters. It is essential for a digital signature to be verifiable

that is an objective third member could apparently prove without knowing the private key of the signing party

that the signature was indeed made by that entity.

Asymmetric encrypting methods can be well applied to create digital signature. In this case all members have a

private and a public key. The signing one always keeps his/her private key in secret. It can never be revealed for

the sake of his/her own safety.

Contrary to this the public key may be published for anybody. In most cases it is necessary as the digital

signature regarding a given message and a person, can be validated by the public key. There is a crucial aspect

that if A acquires the digital signature of B concerning a message, then A should not be able to use this to attend

other messages with the signature of B. Digital signature has several fields of use nowadays,

1.

Data Integrity (to make sure that the data have not been changed by unreliable participants),

2.

verification of the data’s resource (to prove that the data is indeed originated from where it should be.),

3.

protection against denial (to make sure that a given participant could not deny the signatures made by

him/her)

We can use the now introduced RSA algorithm, the techniques based on discreet logarithm, or the elliptic curves

which will be introduced later for creating digital signature patterns.

 RSA

 67
Created by XMLmind XSL-FO Converter.

Let us see a digital signature based on the RSA algorithm. This method is really simple, although far from being

the safest one, the point of the method can be understood well. Our names are still Alice and Bob. Alice

calculates the value with her secret key , where means the message. Then she sends

it to B who decode it using Alice’s public key .

If the result is the message that is is a meaningful text, he can be sure that it was from Alice. Here we have no

encryption, as knowing the public key, anybody can decode the message.

Encrypting the whole message with open key algorithms is quite problematic as it can cost a lot of time. Even

with the different fastening methods the RSA is till slow. Therefore, not the entire text uses to be encrypted but

an extract of it. This extract is called message digest, MD. From these the two most well known ones are SHA-1

or MD5. These are very exotic algorithms. They make an fix long bit sequence from an optional long one. (This

length is 160 bit in case of SHA-1 and 128 with MD5). Hereafter this relatively short bit sequence represents the

content of the documents.

In this case the process of signing is the following. We calculate the so called monitoring value

 and send the pair so fasten the process of signing. We note that the

pair is public so it can be used to check.

4. Exercises

1.

Let and be given prime numbers. Determine the other required parameters of RSA.

2.

Determine the value of using the successive square method.

3.

Let and be given integers, encrypt the word SZAUNA. Use the alphabet for coding. (For

example 19 belong to S, 01 belong to A)

4.

Decrypt the number 1281, if we know that , and .

5.

Suppose that we spoiled the choice of and it have three divisors instead of two, in out case

. Determine the required parameters of RSA.

 68
Created by XMLmind XSL-FO Converter.

Chapter 9. Primality tests and
factorization

1. Primality tests

We could see above that the efficiency of the method depends on a good choice of two large primes. But we do

not know such algorithm that can decide in polynomial time, in case of any positive integer, whether the given

number is a prime. Therefore we would need an algorithm that operates with a low possibility of errors.

Obviously, no mathematician is happy to say that the number is most likely a prime. In these cases it is worth to

use other primality tests or apply longer calculation time for PCs for the purpose.

Before we begin the testing, we exclude some numbers which are obviously not primes. Such easily verifiable

method is the division with the elements of set , where and the square numbers can also be

excluded. We usually test some divisions with previously fixed primes before we begin to apply the methods.

The previous screenings are necessary because the following tests need huge resources in terms of computers

and calculation time.

1.1. Euler–Fermat primality test

A trivial consequence of the Euler–Fermat theorem, introduced in the mathematical chapter, that if

and

then is a composite number.

This would stand as a primality test as the true or false state of the congruence would decide the issue of

primality. The problem is that such numbers exist which can slip through the test. For any exists such

composite number with and the congruence

is true.

These numbers are called pseudoprimes to base w. For example 91 is a pseudoprime to base 3 as it can be

easily proved that but .

The next theorem contains a probalistic statement, mentioned in the introduction. Let us call an integer with

 and satisfying the Euler–Fermat congruence a witness for the primality of .

 Theorem 9.1. Either all or at most half of integers with

are witness for the primality of .

We can now base a simple prime searching method, a probalistic algorithm on this theorem.

At first, we randomly choose an integer for , where .

Then we determine the greatest common divisor of and with the help of the Euclidean algorithm. If

 than is composite.

Otherwise, we can begin the testing. We calculate the value of . If we conclude

that is composite. If , is a witness for the primality of and we have some evidence that could

be prime.

 Primality tests and factorization

 69
Created by XMLmind XSL-FO Converter.

When we have found witnesses, then the probality of being composite is at most possibility of m to be a

prime is maximum , except in that unlucy case that all number with and are

witnesses.

These primes are called Carmichael numbers. The smallest number with these features is W.

R. Alford, A. Granville and C. Pomerance (see [2]) proved that similarly to pseudoprimes, the number of these

is also infinite.

If number is a Carmichael number, is not square, has at least 3 prime factors and if is a prime divisor,

than divides . We can see that this method needs to be refined.

1.2. Solovay–Strassen primality test

To understand the Solovay–Strassen test we need some mathematical notation. The Legendre–symbol, denoted

by , for an integer and prime is defined by

If then is a quadratic residue . If then is a quadratic nonresidue .

The basic result concerning the Legendre symbol is

 Theorem 9.2. If an odd prime, then for every

The Jacobi symbol is a generalization of the Legendre–symbol. Let and , then the

Jacobi symbol is defined to be the product of corresponding Legendre symbols, that is

In this case we find an other type pseudoprime number. Odd composite numbers satisfying the congruence

9.2 for some with are called Euler pseudoprime to the base .

 Theorem 9.3. If an integer is Euler pseudoprime to the base then it is pseudoprime to

the base .

We are very glad since there is no analogues of the Carmichael–number. We can say that this algorithm is

”stronger”.

 Theorem 9.4. If is an odd composite numbers, then at most half of the integers with

 and satisfy the congruence 9.2.

We can use a similar algorithm to Eular–Fermat test. If the congruence 9.2 is not valid, is composite.

Otherwise we regard as a witness for the primality of . Choose another random integer less than and

repeat the procedure. After find witnesses we may conclude that the probality of being composite is at most

.

However the estimates can not be improved, there are Euler pseudoprimes to exactly half of all possible bases.

This test is called Solovay-Strassen primality test.

We remark that using the following theorem to determine the values of Jacobi symbols is easy.

 Theorem 9.5. (The Law of Quadratic Reciprocity). Let and are different odd primes then

 Primality tests and factorization

 70
Created by XMLmind XSL-FO Converter.

1.3. Miller–Rabin primality test

In this section we describe a useful test, known as Miller–Rabin primality test.

 Theorem 9.6. Let be an odd prime and where is odd. If and

 then

for some .

Our method is based on the Theorem 9.6.

First steps
Let us choose an arbitrary integer and a natural number . If , then is composite, if

, then can be written in the form , where is odd.

Extracting square roots

Let us test the satisfying of the congruence . Then let us extract square roots.

Test
After the first extraction we have three possibilities.

• If , then is composite.

• If , then we continue the extraction.

• If satisfy, then is called the witness for the primality of .

Further extracting square roots
As far as the continuation of the previous algorithm is possible we operate other extractions of root.

The end of the test
Finally if at the end of the extractions the congruence is satisfied, we also say that is a

witness for the primality .

If a composite number passes the previous steps, we call that a strong pseudoprime.

 Theorem 9.7. If is a strong pseudoprime to the base , then Euler pseudoprime to the base

.

If the test fails, then is composite. Otherwise we regard as a witness for the primality, it can be proved that

the probality of being composite is at most the .

It means that after executing tests the probability that the found number is not prime is .

We also mention, if , no composite numbers pass the Miller–Rabin primality test if we apply the test

for the set as chosen values.

1.4. AKS algorithm

This is a deterministic primality algorithm, which was republished (see [1]) in 2002 and 2004 by three Indian

mathematician Manindra Agrawal, Neeraj Kayal and Nitin Saxena. It is the first process which is deterministic,

has polynomial running time and not based on any hypothesis. After publishing, Lenstra and Pomerance revised

the running time of the original algorithm in their thesis in 2005 (see [9]]).

 Primality tests and factorization

 71
Created by XMLmind XSL-FO Converter.

The implementation of the algorithm has had several open questions since then. The algorithm is based on a

well-known identity, which says that n is a prime if and only if the next congruence is true

where the division algorithm has to be applied on the coefficients of the polynomial.

For the sake of better understanding we show an easy example.

 Example 9.8. Prove that 5 is a prime number!

The following

congruence is true, since every coefficients is 0 after dividing with 5, but the first and last

coefficients.

Further we need the notation of the order.

 Definition 9.9. For some natural number the least natural number is called the order of

if

It is denoted by .

The AKS method is based on the following theorem.

 Theorem 9.10. Let be a given integer number and let be a positive integer

and . The number is prime if and only if the following conditions are

satisfied:

1.

 is not a perfect power,

2.

 has no prime factor which is equal to or smaller than ,

3.

, for every integer , where

The congruence in the theorem means that we determine the

remainders of the polynomial dividing by . Then the coefficients are taken .

2. Factorization of integers

The familiarized RSA algorithm is based on the fact that the factorization of integers is considered a difficult

task in mathematics that is we do not know a good algorithm to determine the factors. In this part of the chapter

we introduce some algorithms that may give us a chance to get the factors. In other words, this means that the

developers of RSA have to be careful with these breaking methods.

2.1. Fermat factorization

First we look at a case which can be used when the composite number can be written as the difference of two

square numbers and one of the square numbers is small.

 Primality tests and factorization

 72
Created by XMLmind XSL-FO Converter.

 Theorem 9.11. Let be an odd positive integers. There is a 1–to–1 correspondence between

factorization of natural number in the form , where , and representation of

in the form where and nonnegative integers.

Proof.

Given such a factorization, we can write in the following form:

Conversely, given the equation

Our theorem is proved. □

If and and are close to each other, then “small”, so is close to .

Obviously the word “small” is not well defined and also strange in a mathematic book, but can be understood

well after some attempts.

That is to find we begin the attempts with , then we enlarge the numbers by one at a time and we

watch when is realized. Our method will be more understandable through an example.

 Example 9.12. Factorize 200819.

In our case Then which is not a perfect

square. Our next attempt , then Here we managed

to divide the factorizing number to the difference of two square numbers so,

It is obvious, that when planning RSA it is not worth to use primes close to each other. But a modified method

of the Fermat algorithm can be of help in these cases as well.

In this case choose a small value and in the following way , , …. After choosing

let’s examine the realization of equation. Then and has a non trivial

common divisor with , that is provides the wished result. As it turned out previously, the Euclidean

algorithm can do it easily.

 Example 9.13. Factorize 141467.

It turns out soon, that we cannot score fast with the basic method as we have to begin the

attempts with 377.

Let and try the values , , that is . After

some attempts we get that

Using the Euclidean algorithm we have

Finally we get the equation .

Examining the result carefully, we may notice that one factor is the triple of the other, which

can also justify the choice.

 Primality tests and factorization

 73
Created by XMLmind XSL-FO Converter.

In case of the previous methods, we can set a generalization. If we we can give a congruence

where , then we can determine a factor of calculating or .

2.2. Pollard’s factorization algorithm

The title method was published by John Pollard in 1975 [13]. It can be applied to determine the prime divisors

of any integer, where the integer cannot be a power of a prime, and the prime divisors should be small.

The algorithm that is also called as Monte–Carlo method works in the following way, supposing that we would

like to determine the prime factors of a number .

• Let us choose a polynomial with integer coefficients, which should be simple enough for further calculations

(for example),

• Let us choose a starting point or generate it randomly (for example or),

• We calculate the next iteration,

that is ,

• the values are compared, and we look for such values, which belong to different groups , but to

the same for . That is we test the values until we get a proper divisor of .

We note, that after some iteration we are going to discover repetition.

We assume that the polynomial maps on itself of quite randomly that is all the remainders should occur

in different orders.

Let us see an example.

 Example 9.14. Factorize the number 1387 using the Pollard’s method.

Let us use the polynomial and the point . The next table contains the

iterations. Observe that after the 17th iteration we get back the point point so the iteration

will follow this cycle hereinafter. The method got its name after the strange noose that locks in

itself.

 Primality tests and factorization

 74
Created by XMLmind XSL-FO Converter.

Using the equation we get that 19 is a factor of

1387, that is .

 Primality tests and factorization

 75
Created by XMLmind XSL-FO Converter.

It is obviously interesting for us, how long we should search from the values , until we get a

nontrivial result. If is a nontrivial divisor of , we are interested in that considering all mappings of on

itself and all the possible values , to which value exist such in average, that . In other

words from which iteration begins the above mentioned repetition. N. Koblitz proved the following theorem

concerning with it [7].

 Theorem 9.15. Let be a set of elements. Given a map from to and an element

. Let , let be a positive real number, and let

. Then the proportion of pairs for which are distinct,

where runs over all maps from to and runs over all elements of , is less then .

2.3. Quadratic sieve algorithm

The Quadratic sieve method, was first published by Carl Pomerance (see [15]).

Carl Pomerance

It rates as one of the fastest factorizing algorithm. There is only one condition for the number to be factorized

namely that no prime divisors can be larger than . The algorithm finds those and numbers which fulfills

the followings

 Primality tests and factorization

 76
Created by XMLmind XSL-FO Converter.

We get a factor of by calculating .

The algorithm uses a polynomial , where and . The

algorithm both determines the values of and their factorizing composition.

The algorithm establishes a threshold value and a list , which is going to contain those primes of which

the followings are satisfied, and . In our case represents the Legendre symbol.

From the calculated values of only those will be stored, in which factorization there is no prime factor

which would not be in the list. In the mathematics these elements are called B–smooth ([15]). The suggested

value to define is

If the number of list of is and the factors of is in the form

then the number of defined has to be at least more than by one. In each prime factorization we can order

a dimensional vector to the exponent in the following way

where

Then we have to choose those vectors, which sum is 0 . The inventor of the method ensures us in this

way that if we multiply these values we get a perfect square, in our case .

By multiplying the values belonging to , we also get . Now we only have to check the

conditions. The next example illustrates the method well.

 Example 9.16. Determine the divisors of .

Let and . Apply the function

 as introduced above. We show the factorizations and the vectors .

 Primality tests and factorization

 77
Created by XMLmind XSL-FO Converter.

It is easy to check that . After multiplying the proper factors of

 we get a perfect square, it is denoted by , so

We get the following values of and

In this case we get that , which means that and do not fit our aim. Let us

find other and .

In our case , after finding the proper values of we have

Now it comes easily that

It follows that

After that we determine the greatest common divisors, using the Euclidean algorithm, the

values of and . Finally we get the factors of , that is

3. Exercises

1.

Determine a factor of 517 using the Fermat factorization.

2.

 Primality tests and factorization

 78
Created by XMLmind XSL-FO Converter.

Determine the factors of 2041 using the modified Fermat factorization.

3.

Determine a factor of 25661 using the Pollard’s heuristic –method. Use the polynomial and

the point .

4.

Determine a factor of 4087 using the Pollard’s heuristic –method. Use the polynomial

and the point .

5.

Decide using a known method that 2701 is a prime or not.

6.

Determine a smallest pseudoprime to the base 5.

7.

Prove that 65 is a strong pseudoprime to the bases 8 and 18, but it not to the base 10, which is the product of

8 and 18 .

8.

Prove that 17 is a prime using the AKS algorithm.

9.

Prove that 1729 is a Carmichael number!

10.

Determine the factors of 20473 using the Quadratic sieve.

 79
Created by XMLmind XSL-FO Converter.

Chapter 10. Elliptic Curves

Nowadays we see the ECC abbreviation more and more often. It resolves to Elliptic Curve Cryptosystem, which

is a public key cryptosystem based on elliptic curves. The advantages are that this method uses smaller keys

than RSA for the same level of security and it is significantly faster.

The theory of elliptic curves dates back to the 17th century, when Isaac Newton (1642-1727) and Gottfried

Wilhelm Leibniz (1646-1716) independently worked out the theory of differentiation and integrals.

Isaac Newton

Gottfried Wilhelm Leibniz

Scientists of that age happily applied these new mathematical tools for physical problems that required

geometrical treatment.

The task was to determine those curves that is the trajectory of a certain “particle” under some external forces.

Jakob Bernoulli (1654-1705) suggested the following problem: what is the curve, on which a rolling body

travels equal amounts of distance in equally long time periods. He found the curve

, similar to a rotated 8 digit, and called it lemniscus (stripe in ancient Greek).

The curve of the above equation is usually called the Bernoulli lemniscate. Calculating its arc length yields the

integral

which is called elliptic integral as it relates to the arc length of the ellipse. The inverse functions of this type of

functions called elliptic curves.

Giulio Carlo Fagnano (1682-1766) italian mathematician continued this line of research, and later Leonhard

Euler (1707-1783) laid the foundations for the theory of elliptic curves. The next stage of development is

marked by the works of Adrien-Marie Legendre (1752-1833), Niels Henrik Abel (1802-1829) and Carl Gustav

Jakob Jacobi.

The cryptographic applications of elliptic curves were first suggested independently by Neal Koblitz (University

of Washington) and Victor Miller (IBM).

 Elliptic Curves

 80
Created by XMLmind XSL-FO Converter.

To motivate the mathematical study let’s compare the previous 3 cryptosystems’ key sizes in general and

according to their standard. The values in one row have approximately the same strength ([19]).

The table clearly shows that cryptosystems based on elliptic curves have definite advantages. However, the

mathematics behind the elliptic cryptosystems is lot more complicated, therefore next we need to give some

background for understanding.

1. Elliptic Curves

Here we present only the bare minimum needed for understanding the theory of elliptic curves. Deeper

exposition can be found for example in [3, 8].

 Definition 10.1. Let be a field of characteristic different from 2 and 3 and let

be a cubic polynom without multiple roots. An elliptic curve over a field is a set of points

 such that the coordinates are solutions for the equation

and “the point at infinity”.

The discriminant of an elliptic curve is the expression . The discriminant is nonzero if

 has 3 different roots, just like here.

In case is the field of real numbers, we can give some geometric interpretation of the discriminant. If ,

then the elliptic curve is nonsingular (the genus of the curve is 1). If and , then the curve has one

tangent at the singular point (cusp singularity). If and , then the singular point of a curve is called

a node and it has 2 distinct tangents. In this case the curve crosses itself as you can see on the examples below.

In the following we do not consider the singular cases but we mention that for these curves the genus is 0.

Next we draw three elliptic curves with different discriminant values. In cryptography we need elliptic curves

with no singularity, i.e. .

Figure 10.1. Elliptic curves with different discriminant values

 Elliptic Curves

 81
Created by XMLmind XSL-FO Converter.

2. Operations on Curve Points

For the previously defined nonsingular curves we define some operations.

1.

Additive inverse of a point

The additive inverse of a point is the point which is the image of through a reflection along

the axis. The image is also on the curve with coordinates .

2.

Adding points

Let two distinct points on the curve and denote the sum of them by . The operation

consists of the following steps:

1. Draw a line connecting and .

2. The line intersects the curve in a third point denoted by .

 Elliptic Curves

 82
Created by XMLmind XSL-FO Converter.

3. We take the the additive inverse of the intersection point, i.e. reflecting along the x axis, to get the point .

3.

Doubling a point

Determining is done similarly to method b) above, but we take the tangent at point instead of the

connecting line. The intersection determines . As in a) we take the additive inverse.

Figure 10.2. Operations

It is worth noting that addition gives one point on the curve, except the case when we add and . In

this case we get the point in infinity which by definition belongs to the elliptic curve. This addition of the points

of the curve was first suggested by Carl Gustav Jacob Jacobi in 1835.

The addition can also be done algebraically, since we just need to find the intersection points of lines and the

elliptic curves. We have already seen the additive inverse, here are the other cases.

1.

Adding distinct points

If points and are not additive inverses of each other, then the coordinates of the point

 can be given by using the expression .

2.

Doubling a point

Using the previous notation the coordinates of can be calculated in the following way

 Elliptic Curves

 83
Created by XMLmind XSL-FO Converter.

It can be shown that the points of the curve together with the point at infinity form an abelian group under

addition. The point at the infinity behaves as the additive zero element.

So far we trusted our imagination for grasping the point at infinity, but for deeper understanding we have to

mention the notion of the projective plane.

By projective plane we mean equivalence classes of triples of numbers (not all components are zero),

where two triples are equivalent if they can be derived from each other by scalar multiplication. We call such an

equivalence class a projective point. If then there is exactly one point equivalent to . It is easy to

see that in this case we can have a correspondence between the projective and the “normal” points of the

Euclidean plane. The projective points are on the line at infinity. Substituting and we get

the equation

. Letting to be zero we get . Thus there is only one point on the elliptic curve whose coordinate is

zero, the equivalence class. This point we call the point at infinity and is denoted by .

3. Elliptic curves over the field of rational numbers

In case the field is the field of rational numbers, i.e. the coefficients and are rational numbers and

, we know more about the curve. In 1921 Louis Mordell proved the following theorem.

 Theorem 10.2. The points of an elliptic curve over the field of rational numbers form a

finitely generated abelien group.

For understanding the theorem we need another definition.

 Definition 10.3. The order of a point on an elliptic curve is the smallest natural number

such that .

Note that the existence of such point is not necessary. The question, whether there exist points of finite order

on an elliptic curve, is of great importance for mathematicians and cryptographers, especially over the rational

field.

We even know the structure of the abelian group mentioned in Mordell’s theorem. The group consists of a

finitely generated torsion subgroup (points of finite order) and a subgroup of finitely many points of infinite

order. This means that there exists points of infinite order, and points with

prime power order such that all rational points on the elliptic curve can be written as

where and . The rank of an elliptic curve is the number of points of infinite order.

4. Elliptic curve over finite fields

The theory of finite fields started with the works of Evariste Galois (1811-1832). In recent years finite fields

have become really important due to their powerful applications (algebraic codes, cryptography). Here are two

important theorems stated without proofs.

 Theorem 10.4. is a field if and only if is a prime.

 Elliptic Curves

 84
Created by XMLmind XSL-FO Converter.

 Theorem 10.5. For all prime and all natural numbers there exists a finite field with

 elements.

From now on let’s denote a finite field by and let be an elliptic curve over this field. It is not difficult to

see that has at most points. This means that there are points with coordinate pairs and the

point at infinity. We observe that there are at most two value for each .

However, we usually do not know how many there are actually on the elliptic curve over the finite field .

Helmut Hasse (1898-1979) gave an estimate.

 Theorem 10.6 (Hasse). Let be the number of -points of the elliptic curve over the

finite field . Then

For easier understanding we consider the elliptic curve over , so we will use the rules of modular arithmetic.

Let

where is prime.

We can say that if both sides of the equation give the same remainder when dividing by then is a

point on the curve.

For the points of the curve and for the discriminant the followings hold:

1.

 and

2.

.

First this may seem daunting but with a closer look we can discover interesting properties and these may be

helpful.

1.

calculating with real numbers is slow and inaccurate, modular arithmetic is fast and accurate as it works only

with integers

2.

the “real” curve has infinitely many points, the modular one has far less

3.

in modular arithmetic the domain of an operation is bounded, since the operand and the result are between

and ,

4.

modular arithmetic increases the number of cryptographic solutions.

These curves are different from the well-known real curves. While symmetry remains but in many cases not

along the axis. The next figure shows the “curve” defined by the parameters , and ([19]).

We observe that

 Elliptic Curves

 85
Created by XMLmind XSL-FO Converter.

1.

the curve has 11 points,

2.

there is one point in the origin (since),

3.

10 points look scattered somewhat randomly but symmetric about the point , therefore

4.

for all values we have 2 values.

Figure 10.3. Az “curve”

For the sake of accuracy we list the points of the curve:

Now the number of points of the curve (also called the cardinality or the order of the curve denoted by)

is 11 for in the above example. This is just a coincidence. Actually, those curves that has number of points

called anomalous curves and banned practically by all standards since there exists an efficient attack method for

ECC systems using these curves.

5. Modular operations on curve points

1.

Additive inverse

 Elliptic Curves

 86
Created by XMLmind XSL-FO Converter.

On real curves the additive inverse of was simply . The situation is the same now, but we

have to take into account the modulus. By we mean the point.

Looking at the previous figure we can see that the sum of coordinates of opposite points is always .

For instance and . Therefore we can calculate an point by

and .

2.

Addition

The previous method of “connnecting” two points with a line and find the intersection obviously breaks

down in the modular case. Point doubling also does not work in the same way. However, following the

algebraic method and calculating according to the modular arithmetic is doable. Thus

6. Discrete logarithm

When introducing the knapsack problem we mentioned that each public key cryptosystem is based on a

practically unsolvable method. This means that the solution would require so much time which is not in

proportion with time period we have to acquire the information. The same is true for the ECC based methods.

the underlying problem is called Elliptic Curve Discrete Logarithm Problem, ECDLP.

In 1991 few researchers worked out the RSA algorithm based on elliptic curves, but a few years later it was

shown that the ECC-like RSA has no significant advantages. ECRSA still uses factorization as the underlying

hard problem.

So far we defined three operations on the curve, addition, doubling of points and additive inverse. If we imagine

the sequence

then we discover that we can do multiplication as well. The point we get is called the scalar multiple.

It is easy to see that determining the natural number is not an easy task, especially if the curve is over a

field.

 Definition 10.7. Let be an elliptic curve over the field and a point on the curve.

Then we talk about the discrete logarithm problem (with base), if for a given point

we want to find the natural number such that , in case such an exists. We call

the discrete logarithm of with repect to base .

The discrete logarithm’s previously defined multiplication is essentially the same as addition on the elliptic

curve.

We note, that most systems based on ECDLP are signature or key agreement based, since for fast encryption

this moethod is not suitable. Next we describe some existing systems.

6.1. ECDH - Elliptic Curve Diffie - Hellman key agreement

The original Diffie-Hellman encryption algorithm solved the key agreement problem of symmetric key cipher

systems. Both the sender and the reciever perform the same operations with the same public and differing

private keys, but they get the same result which they could use as a key. The ECDH works the same way but it

uses operations on elliptic curves instead of modular exponentiation.

 Example 10.8. Let’s demonstrate this in an example:

 Elliptic Curves

 87
Created by XMLmind XSL-FO Converter.

Alice and Bob agrees on an elliptic curve and the point on the curve, called the base

point. These are the public parameters of the system. Alice chooses a random number

(smaller that the order of) and Bob acts similarly and chooses . These choices are kept

secret. As the next step of the key exchange Alice computes the point and sends it to Bob.

Similarly Bob calculates and sends it to Alice. Finally Alice multiplies (received from

Bob) by getting the point. In the same way Bob multiplies by and thus get the

same result: . Some property of the common point (e.g. the or coordinate, , or

XOR , etc.) can be used for a key. Curious Eve would have to calculate , but only knows

, and and not the secret and numbers.

We can follow these steps in the following numerical example:

6.2. EC ElGamal encryption

As the original ElGamal cipher is based on the Diffie-Hellman’s problem, the elliptic ElGamal is built on

ECDH:

1.

Alice and Bob choose a curve and a base point .

2.

They both choose random numbers and as private keys.

 Elliptic Curves

 88
Created by XMLmind XSL-FO Converter.

3.

Alice sends point to Bob as public key.

4.

Bob sends point to Alice as public key.

5.

If Alice wants to send a message, she maps the message to a point (or points) of the curve and generates a

random as ephemeral key. Then she sends the message pair to Bob.

6.

Bob reads the message with the following method: he multiplies the first half of the message with his secret

, thus getting that can be simply subtracted from the second half of the message.

6.3. ECDSA-Elliptic Curve Digital Signature Algorithm

For sending a message signed Alice needs the following tools and parameters:

1.

an elliptic over (public key),

2.

base point of order (public key, bit),

3.

a random number , and a point . Alice’s keypair , where is private and

 is the public key.

7. The signing algorithm

• Alice chooses a number between and .

• She calculates the pointot and . If the coordinate is zero , then

she chooses a new . The coordinate of the will be one component of the signature, therefore we denote it

by .

• She computes the multiplicative inverse of , .

• She calculates the stamp of the message. For this the standard recommends the SHA-1 algorithm. Let

 (interpreted as a number)!

• Two other components of the signature: . In the unfortunate case, when ,

we have to restart the whole algorithm. Here we can see that in the 2. step why cannot be zero, since the

signature would not contain any private key!

• Alice’s part of the signature belonging to message : .

8. Exercises

1.

 Elliptic Curves

 89
Created by XMLmind XSL-FO Converter.

Let and be points on the elliptic curve . Calculate and

!

2.

Determine the order of point on the elliptic curve!

3.

Consider the real elliptic curve and the point . Compute the coordinates

of !

4.

Given the elliptic curve and point , What are

?

5.

Using the elliptic curve from the previous exercise send a message using the instructions of EC-ElGamal!

The message is , the base point , and .

 xc
Created by XMLmind XSL-FO Converter.

Bibliography

[1] M. Agrawal, N. Kayal, N. Saxena Primes is in P., Annals of Mathematics 160 (2004), 781–793.
[2] W. R. Alford, A. Granville, C. Pomerance, There are Infinitely Many Carmichael Numbers, Annals of

Mathematics 140 (1994), 703–722.
[3] I. Blake, G. Seoussi, N. Smart, Elliptic curves in Cryptography, Cambridge University Press, 1999.
[4] Data Encryption Standard, Federal Information Processing Standards Publication, FIPS PUB 46-3, 1999.

(http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf)
[5] D. Husemöller, Elliptic curves, Springer-Verlag, 1987.
[6] Iványi A. (szerk), Informatikai algoritmusok 1., ELTE, Eötvös Kiadó, 2004.
[7] N. Koblitz, A course in number theory and cryptography, Springer-Verlag, 1987.
[8] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984.
[9] H. W. Lenstra, Jr., C. Pomerance, Primality Testing with Gaussian Periods, 2005.
[10] H. Lewis, C. Papadimitriou Elements of the Theory of Computation, Prentice-Hall, 1981.
[11] Jan C. A. Van Der Lubbe, Basic Methods of Cryptography, Cambridge University Press, 1998.
[12] A. Menezes, P. van Oorschot, and S. Vanstone Handbook of Applied Cryptography, CRC Press, 1996.
[13] J. M. Pollard, A Monte Carlo method for factorization, BIT Numerical Mathematics 15, (1975), 331–334.
[14] Márton Gyöngyvér, Kriptográfiai alapismeretek, Sciencia Kiadó Kolozsvár, 2008.
[15] C. Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43, (1996), 1473–1485.
[16] R. Rivest, R. Silverman, Are ’Strong’ Primes Needed for RSA, Cryptology ePrint Archive: Report

2001/007.
[17] A. Salomaa, Public-key cryptography, Springer-Verlag, 1990.
[18] S. Singh, Kódkönyv, Park Könyvkiadó, 2007.
[19] Virasztó T., Titkosítás és adatrejtés, NetAcademia Kft., 2004.

