
A P P E N D I X A 

T H E S I G N I F I C A N C E O F T H E M A G N E T I C F L U X 

D E N S I T Y Â A N D T H E M A G N E T I C F I E L D S T R E N G T H Ç 

IT IS impor tant for a proper appreciat ion of the magnet ic proper t ies of 

superconductors tha t the reader should have a sound unders tanding of 

the significance of Â and H. T h i s is especially so in view of the fact tha t 

the M K S system involves a ra ther different approach to magnet i sm than 

the mixed e.s.u.—e.m.u. system. 

A. 1. D e f i n i t i o n of Â 

T h e modern approach is to abandon the concept of free magnet ic 

poles and instead to discuss magnet i sm entirely in t e rms of the interac -

t ion be tween currents . F r o m this point of view, the magnet ic flux density 

vector Â is the basic magnet ic quant i ty , in the sense that in electrostat ics 

the fundamental quant i ty is the electric field vector E . If a conductor 

carrying a current i is placed in a magnet ic field a force will act on the 

conductor due to the presence of the field. T h e magnet ic flux density Â 

of the field is defined by the rela t ionship: 

d¥ =  tdl x Â, (A. l ) 

where d¥ is the force on a current element tdl. T h i s is analogous to the 

definition of Å as the force on unit charge, and establishes Â as the 

fundamental property. 

Magnet ic fields are generated by currents , and the flux density 

resulting from a given geometrical a r rangement of cur ren ts in free space 

can be calculated from the B i o t - S a v a r t law: 

d B = ^ ± , (A.2) 

where dB is the contr ibut ion to the flux density at a point Ñ due to a 

current element idl, r is the dis tance of Ñ from the element dl9t the unit 

vector in the direction of r, and ì 0 the permeabil i ty of free space. T h i s 
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expression for Â corresponds to the expression 

for the electric field in free space due to a charge dq9 å0 being the permit -

tivity of free space. It can be shown from the Bio t -Savar t law that in 

free space Â satisfies the Ampere circuital law 

) Â . Ë  = / / 0 Ë (A.4) 

where the line integral j> Â . dl is taken round any closed pa th and J is 
the net current linking that path . 

It can easily be shown by applying the Amp£re circuital law to an in -
finitely long solenoid that the flux density inside it is uniform and given 
by 

Â =  ì 0ôçß, (A.5) 

where m is the number of turns per unit length and i the current through 

each of them. Fur thermore , the flux density outside the solenoid is zero. 

A . 2 . T h e Effec t o f M a g n e t i c Mate r ia l 

All the foregoing equations wi th the exception of (A. l) apply only in 

free space. T o introduce the effect of magnetic material, consider a long 

cylinder of paramagnet ic material inside an infinitely long solenoid, as 

shown in Fig. A . l . Paramagnet ism arises because the material contains 

Solenoi d (mi Am"1) 

/ 

Imaginar y surfac e  current s 
(I Am" 1 ) 

FIG . A.l . Rod of magnetic material in infinite solenoid. ABCD path of 
integration (A.7). 

within it elementary atomic dipoles, and these dipoles tend to be aligned 

by the field of the solenoid, so that they point predominantly in the direc -

t ion of the field. Remember ing that the atomic dipoles are due not to free 
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magnetic poles, bu t to small circulating currents which arise either from 

electron spin or from the orbital mot ion of electrons within the a toms, it 

will be seen that these circulating cur ren ts are as shown in Fig. A.2a 

when viewed parallel to the axis of the solenoid. Because of the aligning 

influence of the field, all these cur rents circulate in the same sense. T h e 

degree of magnet izat ion of the material can be described by specifying 

its intensity of magnetization (usually called simply its "magnet iza t ion") 

I, which is a vector pointing in the direction of magnet izat ion and 

having a magni tude equal to the resultant magnet ic dipole moment per 

unit volume. 

T h e total flux density wi th in the cylinder is now the resul tant of the 

flux density due to the solenoid and that due to the atomic currents . 

(a ) (b) 

FlG. A.2. Equivalence of aligned current dipoles and surface current (viewed in 
direction of field). T h e atomic current loops which generate the magnetic dipoles all 
circulate in the same direction due to the aligning action of the field, as in (a). T h e 
average flux density produced by these current loops within the material is the same 

as would be produced by imaginary surface currents of density / A m " 1 , as in (b). 

Clearly Â will not be uniform wi th in the magnet ic material but will fluc-

tua te from point to point wi th the periodicity of the atomic lattice. But 

there will be an average value of B , and it can be s h o w n t tha t if the 

magnetic material has a magnet izat ion I this average value is exactly the 

same as would be produced by fictitious cur rents flowing around the 

periphery of the cylinder in planes perpendicular to the axis, as in Fig. 

A.2b, and having a surface density of IA m _ 1 . T h e magnet iza t ion of the 

paramagnet ic material is therefore equivalent to an imaginary solenoid 

carrying a current of / A m - 1 and the additional flux density produced by 

this solenoid is, in accordance wi th (A.5), given by 

B m =  ì 0É. 

t See, for example, A. F. Kip, Fundamentals  of Electricity and  Magnetism,  McGraw-Hill , 
1962. 
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T h e flux density due to this imaginary solenoid simply adds to the flux 

density produced by the real solenoid, so the magni tude of the total flux 

density within the material is given by 

Â =  ì 0ôçß + ì 0É. (A.6) 

T h e r e are t w o conventions in the l i terature about the dimensions of / . 

Mos t books on electromagnetic theory give / the dimensions of amperes 

per metre, as we have done here. Books dealing with the magnetic 

properties of solids, however, often describe their magnet ism in te rms of 

a magnetic polarization  / ' , a magnetic flux density which the sample 

adds onto the flux density of the applied field. So Ã has the same dimen -

sions as Bf and (A.6) becomes 

Â = ì 0ôçé + / ' . (A.6a) 

T h e r e are arguments in favour of each convention, but the definition of / 

embodied in (A.6) as a magnetic field strength contributed by the sample 

seems to be more in keeping with the parallelism between magnet ism 

and electrostatics, and we have adopted it in this book. 

A . 3 . T h e M a g n e t i c F i e l d S t r e n g t h 

If we take the line-integral of Â around the path ABCD in Fig. A . l , 

where AB = CD = x, we find from (A.6), remembering that 5 = 0 out -

side the solenoid, 

Â . dl =  (ja0mi + ì 0É)÷. (A.7) 

ABCD 

W e can write this as 

§Â.ÜÉ =  ì 0(.//+  Jm), (A.8) 

where Jf — xmi is the total current through the turns of the solenoid 

linking ABCD, and Jr

m = Ix is the total effective surface current which 

is equivalent to the magnetizat ion J. Jf is often referred to as the "free" 

current. Hence (A.4) only remains valid if we identify . / wi th Jf +  Jm. 

T h i s is not a useful relationship, however, because although we know Jf 

we do not in general know « / m . I t is therefore convenient to introduce a 

new vector, called the magnetic field strength H , which is defined by 

Â = ì 0 Ç + ì 01 (A.9) 

so that (A.6) gives H= mi (A.10) 
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and (A.7) becomes <J)H . dl — xmi = (A.l 1) 

Hence Ampere ' s circuital law for Ç involves only the real  or "free" 

current Jf and is independent of the presence of the magnet ic material . 

It is this impor tant result which makes Ç a useful quant i ty . I t is an un -

fortunate feature of the M K S system that the fundamental dist inct ion 

between Â and Hf as exemplified by (A.8) and ( A . l l ) , t ends to be 

obscured by the presence of a dimensional factor ì 0 in (A.8) which is 

absent in ( A . l l ) . 

For many materials (but not iron) it is found that the magnet izat ion / 

is proportional to the magnet ic field intensity within the specimen, so 

that inside the material I = ÷¢ where ÷ is the susceptibility. Hence 

Â = ^ 0 ( Ç + É) = ( 1 + / Ê Ç 

where ì,.  =  1 + ÷ is the relative permeabili ty, which is a pure number . 

For ferromagnetic or paramagnet ic mater ia ls ÷ is positive and ì Ã > 1, 

bu t for diamagnetic materials ^ is negative and ur <  1. 

T o sum up, for the case of a long thin rod, the flux densi ty Â within 

the rod includes a contr ibut ion from the magnet izat ion of the material , 

while the magnetic field s t rength Ç does not. In this case the magnet ic 

field s t rength inside the rod is the same as if the rod were not there. 

A .4 . T h e C a s e o f a S u p e r c o n d u c t o r 

T h e foregoing discussion applies also to the case of a type-I supercon -

ductor (or a type-II superconductor below Hcl), bu t wi th an impor tant 

distinction. T h e flux density wi th in the superconductor is zero if we ig -

nore penetrat ion effects, and this perfect d iamagnet ism is brought about 

by real  currents which circulate around the periphery of the supercon -

ductor ; they are in fact the screening cur ren ts discussed in Chapte r 2. 

W h e n it comes to the concept of Â and Ç in a superconductor , there 

are two ways in which we can proceed. W e can focus at tent ion on the 

screening currents and regard them as real cur rents not different in 

na ture from the current in the windings of the solenoid. On this view, 

which regards the bulk of the superconductor as non-magnet ic , it is ap -

propriate to rewri te (A.6) in the form 

Â =  ì 0(ôçß + Ë ) , (A. 12) 

where j s is the surface density of the screening currents per unit length 
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parallel to the axis. T h e vanishing of Â within a superconductor is due to 

the fact that the t e rms in brackets in (A. 12) are equal and opposite. In 

this case we have for any closed path 

§Â.ÜÉ = ì 0(.// +  Ë ë (A.13) 

where f is the total current through the solenoid tu rns linking the path, 

and •'/ s the total diamagnetic screening current linking the same path. 

However, although the screening currents are certainly real, we cannot 

measure them with an ammeter , and we shall continue to define the 

magnetic field strength Ç so that . dl is always equal to the "free" or 

measurable  current / f . T h i s means that we retain (A. 10), which states 

that 

H=mi, (A. 10) 

just as in the case of a paramagnetic material, and the screening currents 

affect Â but not Ç inside the material. 

Alternatively, it is possible to invert the argument summarized in 

§ A.2 and regard the real currents flowing on the surface of the supercon -

duc to r as equ iva len t to fictitious d ipoles uni formly d i s t r i b u t e d 

throughout the body of the superconductor. (Since the superconductor is 

diamagnetic, these imaginary dipoles would point the opposite way to 

the real dipoles in a ferromagnetic or paramagnet ic specimen.) F rom this 

point of view, we can talk about the intensity of magnetizat ion / of a 

superconductor and regard this either as the magnetic moment per unit 

volume of the equivalent dipoles or the surface density of the screening 

currents in amps per metre. A practical definition of / is that it is the 

total magnetic moment of the specimen arising from the surface currents 

divided by the volume of the specimen. / is equal to and has the same 

dimensions as the q u a n t i t y ^ occurring in (A. 12). In t e rms of / , we may 

write, in accordance with (A.6), 

Â =  ti0(mi + / ) , (A.6) 

where the term y u 0 mi represents the flux density due to the solenoid and 

ì 0É is the flux density resulting from the fictitious equivalent dipoles. As 

before, we wri te 

Â = ì 0Ç + ì 01, (A.9) 

and the vanishing of Â implies that within the superconductor the field 

strength Ç must be equal to —/, so that we have ÷ =  — 1 or ì Ã =  0, i.e. 

the bulk of the superconductor is perfectly diamagnetic. 
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Whichever way we choose to look at it, we have 

H.dl =  ·(/ôÖ— <f B . r f l , (A.l la) 

and the value of Ç inside a long thin superconductor is the same as if the 

superconductor were not there. (H is in fact the quant i ty we have called 

the applied field Ha). Whichever view we adopt, we say tha t deep wi thin 

a superconductor Â = 0, bu t in the presence of an applied field Ç does 

not van i sh . ! 

For most purposes the second approach is more convenient, since it 

allows us to apply to a superconductor concepts such as energy of 

magnetizat ion and demagnet izing field which were first developed for 

the case of ordinary magnet ic materials . As an example, the t rea tment of 

the intermediate state given in Chap te r 6 would be very difficult if we 

had to take the screening currents into account explicitly. T h e r e are, 

however, cases where we are particularly interested in the spatial d is -

t r ibut ion of flux density (and of screening currents) near to the surface of 

a superconductor . An example is the development of the L o n d o n 

equat ions in Chapte r 3. In this case, it is advantageous to adopt the first 

approach and recognize the existence of the real surface currents which 

circulate around the specimen whose bulk consists of non-magnet ic 

material. T h e dist inction be tween Â and Ç is now revealed by (A.l la) 

;nd (A. 13), which in point form become 

curl Ç = ]f and curl Â = ì 0(É/ + D -

Wi th in the s u p e r c o n d u c t o r , ] f =  0, so tha t curl Ç = 0 and curl Â = ì 0]5. 

Both approaches are encountered in the l i terature, and the reader 

should familiarize himself wi th each of them. 

A .5 . D e m a g n e t i z i n g Effect s 

So far we have limited our discussion to the case of a long thin 

specimen in which end effects are un impor tan t . W e now show tha t the 

t Th i s standpoint is not invariably taken in the literature. It is quite common to find authors 
who write Â = ì 0Ç  everywhere within the superconductor. In this case the vanishing of Â im-
plies the vanishing of Ç  also. But there is really no point in introducing Â and Ç if they are 
everywhere simply related by a universal constant of proportionality. Th i s way of looking at it 
causes difficulties in the explanation of demagnetizing effects, and also means that the usual 
boundary condition involving the continuity of the tangential component of Ç  at the boundary 
between two media, which we have made use of in Chapter 6, is no longer valid at the interface 
between the superconducting and normal phases. 
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relationship Â = ì 0(Ç +  I) has to be interpreted somewhat differently if 

the specimen is not long in comparison wi th its width. T o be specific, 

consider a sphere of paramagnet ic material which is placed in a uniform 

applied field, say within a long solenoid. It is possible to show that the 

magnetizat ion I , defined as the magnetic moment per unit volume, is 

uniform within the sphere and is parallel to the axis of the solenoid. It 

can also be s h o w n t that the flux density due to the magnetizat ion is the 

same as would be produced by surface currents having a constant sur -

face density / per unit length measured parallel  to the axis. T h e flux 

density produced by such a distribution of surface currents around the 

surface of the sphere is equal to %ì 0É, so within the sphere the flux 

density is uniform and given by 

Comparing this wi th (A.6) and (A.9), which state that for a long thin 

specimen 

Â =  ì^ß + ì 0É =  ì 0Ç + ì 0É, 

we might be tempted to define the magnetic field strength by 

Â =  ì 0Ç + áì 0É, 

where á is a numerical factor depending on the geometry of the 

specimen, equal to unity for a long thin specimen and to 2/3 for a sphere. 

If we were to do this, the field strength inside the body would be equal to 

mi both for a long thin specimen and for a sphere. However , unlike the 

case of a long thin rod, in the case of the sphere the surface currents alter 

the flux density (and therefore the field strength, since Â =  ì 0Ç) outside 

the sphere, and an argument identical wi th that given on page 65 

(Chapter 6), shows that we should no longer have <j>H . dl =  .9 f . It can 

be shown that if we wish to retain <|>H · dl = .// for any closed curve, 

where is the total current in those tu rns of the solenoid which link 

the curve, then we must also retain (A.9) as the definition of the 

magnetic field strength H , inside the sphere, i.e. 

=  ì^çé + | ì 0 7 . (A.13) 

Â, = ì 0 Ç , + ì 0 É· (Á.9') 

But, according to (A.13), 

Â{ =  ì^çé + | ì 0 7 · (Á.13) 

t See, for example, A. F. Kip, Fundamentals  of Electricity and  Magnetism,  McGraw-Hill, 2nd 
ed., 1969, p. 370. 
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T h e s e equat ions can bo th be satisfied only if 

H, =  mi- j / , 

i.e. the magnetic field s t rength inside the sphere is different from the 

value mi which it would have if the sphere were absent and which we 

have called the applied field Ha. Hence for a sphere 

Ht =  Ha — } / , 

and for a body of arbi trary shape 

H , = H f l - n I , (A.14) 

where ç is the "demagnet iz ing factor", equal to 1/3 for a sphere. For a 

superconductor, if we adopt the approach which ignores the screening 

currents bu t regards the bulk of the superconductor as perfectly 

diamagnetic , then 

JB, = ì 0Çß + ì 0É =  0, 

so that 

I =  -H, 

and from (A.14) H{ — Ha +  nH{, i.e. the field s t rength inside the 

specimen is increased  to Ht =  Ha/(l — Þ). F o r the general case w e may 

wri te 

Âß =  ì 0 ( Ç á - nl + I ) 

applied demagnet iz ing magnet iza t ion 

field field 

internal field, H , 


