INDEX

Absorbance 244-245
Absorption method 19
Accuracy of analysis, evaluation of 163-165
Addition method 144-146, 151
Adsorption 74-75
—, enrichment by 172
Analytical pairs, selection of 146-149
Angular dispersion 86-87
Aperture, light filter 99
Arc spectrum 10
Argon, determination in air 210-213
—, — in krypton-xenon mixture 192-193
—, — in nitrogen 193-196
—, energy levels (chart) 2-3

Background 141-142, 167-168
Bypass factor 18

Calibration with photoelectric recording 143-144
—at photographic recording 139-143
Carbon, isotopic analysis 238
Carbon dioxide and monoxide, determination in air 208-209
Cathode drop 34-35

Cathode glow 36-37
—, hollow 41-42
—, sputtering 35-36
Coefficient of variation 158n
Collisions of the second kind 4, 5, 28
Compensation method 114
Composition changes during discharge 136-137
Conditioning discharge tubes 173-174
Contrast factor 99
Control standard method 141
—, valve, sylphon 141
Crookes dark space 34
Cross section, effective 6

Discharge, high-frequency glow 45-50
—, — ring 50
—, superhigh-frequency 49-50
—, weak and strong 48-49
Dispersion of radiated light 250
Distribution of errors 157
Doppler line broadening 237-238
Double beam absorption spectroscope 247

Electron concentration 14, 17-18
Electron temperature 13, 15-17, 128
— of binary mixtures 28
Electrophoresis 39-41
Emission method 20
Energy of molecule 230
Enrichment 170-172
Error, arithmetic mean 158
— distribution 157
—, probable 158
Errors 156, 160
Excitation events 24, 25
— function, approximation of 8
—, helium line 7
—, level 6
—, spectral line 6
— probability 6
—, stepwise 10, 11, 133
Excited atom, concentration 18-23
Exhaled air, analysis 277-278
Exposure, photographic 90

Faraday dark space 37
Fast analysis 218-225
Filters 101-103
—, interference (table) 103
Firing potential 31
Flickering method 115, 119-120
Flow method 174

Gamma 139, 141
Gas adsorption 35-36
— analyzers 121-125
Glow discharge, divisions of 33

Heyes method 176
History, discharge tube 161
Homology 147
Hydrocarbons, determination in inert gases 189
Hydrogen, determination in air 207
—, — in helium 205
—, — in inert gases 187-188
—, energy levels (chart) 2
—, isotopic analysis 233-237

Ionization function 9
Inert gases, determination of N₂, O₂, H₂ and hydrocarbon impurities 183
Integral absorption method 251
Isothermal plasma 12
Isotopic shift 228-231

Krypton, determination in air 214
—, — in oxygen 196-197
—, — in xenon 192

Light transmittance 90-95
Limit of detectability 167
Line intensity of argon 26, 27
Linear dispersion 87
Luminous flux 94

Maxwellian distribution 14
Metastable state 3
Method of accumulation of measurements 167

Neon, determination in helium 181-182, 190-192
—, energy levels (chart) 2-3
— and argon, determination in helium 200-201
Nitrogen, determination in CO₂ 198-199
Nitrogen, determination in argon 220-224
—, — in argon and neon 219
—, — in inert gases 184-187
—, isotopic analysis 239-240
— and hydrogen, determination in helium 204-205
— and oxygen, determination in hydrogen 201-202
Normal width of slit 89

Permanent-graph method 140
Pinching of discharge 38-39
Positive column 33, 38
Probe method 14
Pulse generator 53

Optico-acoustic gas analyzers 255-258, 261
Oscillator, high-frequency 79-85
—, magnetron 84-85
Oxygen, determination in air 209-210
—, — in inert gases 186
—, analysis 261

Radioactive transition 25
Range of action of atom 6
Rayleigh's criterion 88
Reabsorption 12, 27-28, 138
— method 19
Rectifiers 78-79
Resolving power 88
Resonance radiation 10
Reversal temperature 20
Rise curve 139
Root-mean-square deviation 159
Rotational isotopic effect 231
Rozhdestvenskiy method 19

Sensitivity, absolute 165-166
— threshold 167

σ (standard deviation) 157, 159
Slit illumination 95-97
Spark generator, Thomson 51
— spectrum 10
Spectral line width methods 20
Spectrum excitation mechanism 131
Standard deviation 157, 158, 159
— gas mixtures, dilute 71
Stopcocks 60
Styloscope 180-182
Successive approximation method 144
Surface ionization coefficient 35, 36

Third-component effect 200, 201
Three-standard method 140, 143
Time-resolved spectra of pulse discharges 55-56
Töpler pump 68-71, 152, 153
Transmission coefficient 98
— curve tail 99, 104

Upper atmosphere, analysis 215-218

Vacuum gage, Pirani 59
Variance, analysis 159
Vibrational energy 230
Volume ionization coefficient 36

Water vapor, determination in air 207-208

Xenon, determination in krypton 192