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I. Introduction 

The subject of this paper is the behavior of electrons in systems for 
which the potential is not completely determined as a function of po­
sition, but is instead given by some probability distribution. The elec­
trons will be assumed to be independent, so that the problem reduces 
to that of one electron. The available states are then filled with due 
regard to the Pauli principle. This formalism, developed by S. F. Ed­
wards, applies equally well to independent quasi particles moving in 
an appropriate potential. 

Consider a set of identical ions fixed at positions R(, i = 1, 2, N. 
If the potential around each ion is v(r), the Schrodinger equation is 

[ - - ^ F 2 + ^ ( r - R « ) - £ » ] v * W = 0 

and the propagator for the electron in this potential is 

Ρ 7 2 + Σ "(r - RQ) - Ε - is J G(r, τ';Ε) = - δ(τ - r') 

and is given in terms of ψη by 

Now consider a system of such sets in which the particular set Rl 5 

R# occurs with a probability distribution Ρ(Κι, R#). The average of 
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any function over this system will be denoted by Dirac brackets which 
thus correspond to the integration of the function with Ρ over all R 1 ? 

RN space. Such a system may be formed by subdividing the given 
substance into a large number of smaller pieces or by taking the whole 
of the substance and considering its instantaneous distribution at dif­
ferent times. (There is no time dependence in the theory, which is there­
fore entirely within the adiabatic approximation.) 

Take the Fourier transformation of (1), average it over the system, 
and take its imaginary part : 

<Im G(k, k; E)> = - π φΛ(& ¥>„*(k) δ(Ε - En)> 
η 

(the two transformed variables have been put equal). The right-hand 
side is then the probability that in this system a state with energy Ε = En 

has "momentum" k. In other words the density of states with a given 
energy and momentum is a probability distribution 

QQL, E) = —lm π-1 <G(k, k; £)> 

and the density of levels is now 

n(E) = 

In an ordered system the brackets do not arise and if the spectrum is 
continuous one has ρ(Ιί,Ε)αδ[Ε— £(k)] , i.e., Ε and k are directly 
related. 

Our program will be to work out the propagator G(k, k; E) and from 
it to evaluate the density of states. Transport properties such as conduc­
tivity, in general require averages over pairs of propagators and so are 
much harder to work out. 

The technique to be used is that of formally expanding the propagator 
around the unperturbed propagator G0 which satisfies 

h 2 \ 
V2 — Ε — is) G0(r — r'; E) = — <5(r — r'). 

2m J 

In Fourier transform G0(IL; Ε) = (E— k2 + is)-1. The expansion may 
then be averaged term by term and the series re-summed in an appro­
priate manner. 
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Thus 

<G> = G 0 + G 0 < £ Ο Go + <?ο<Σ t>aG0 2 »β> <?„ + ... . (2) 
a a 

Consider first the case of weak potentials. 

II. Weak Potentials 

If the potential is weak then it is convenient to choose the zero of 
energy to be such that < Σ α va} = 0 (in the case of a homogeneous 
system), after which all terms involving odd powers of the potential 
will in general be small compared to the term following which has one 
extra power of v. If one now writes 

<Σv* °o Σ ρβ>= Σ2 
and α 0 

<Σ V*G* Σ νβ°ο Σ νν °ο Σ = Σ2 °ο Σ2 + Σ4 

α β γ δ 
and so on, then a formally exact summation of Eq. (2) is given by 

< σ> = ( σ Β - 1 - Σ « - Σ 4 - · · · ) -1 · 

If Σ 4 is small compared with Σ 2 and is, in particular, well behaved near 
the zeros of G 0

_ 1 — Σ 2 , then this formal summation may be a good ap­
proximation to the correct answer. This approximation depends mainly 
on the degree of order in the system; it is very good for a random system 
or for a perfect lattice. The remaining step is to work out Σ 2 and the 
two extreme cases may be used to illustrate this process. 

A . COMPLETE D I S O R D E R 

In Fourier transform 

Σ2 = <Σ ρ(χ - R ° ) G « ( x - y) K y - R^)> 
αβ 

= <Σ (-̂ "J Ν » D̂) expO*k.Ra + FJ.R,)) 

j exp(— 1 k · x) exp(— ij · y) G 0(x — y) dx dy 
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so that the averaging is concentrated into 

<Σ exp(/k.R e + /J-ig> (5(k + j). 
If the R 's are completely random only the a = β terms in the sum sur­
vive and then 

<5(k + j) exp( /k.(R a - R,)> = Ν 

so that 

At the same time Σ 4 depends on 

< ^ exp(il-R a + /m-R^ + in-Ry + φ - R a » 

of which the dominant terms occur when a = β, γ = δ (the Σ 2 G0 Σ 2 

part) and when a = γ, β = δ or a = δ, β = y. These last two choices 
lead to terms of the form 

Ν2 Γ 

~yT J I I ' I * ® I ' G ° ( k - j ) G ° ( k - 1 - J) G «(k - j) di d\ 
which have no poles. In this case one may show that 

Σ 4 / Potential scattering length \ 

Σ 2 \ Electron wavelength / 

B . PERFECT O R D E R 

In a perfect lattice with one atom per unit cell 

Ν2 1 

<Σ e x p [ / k . ( R a - R , ) ] > = £ < 5 ( k - K ) 

where the Κ are the reciprocal lattice vectors. Therefore 
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The zeros of G 0

- 1 — Σ 2 then lie along the lines in E, k space illustrated 
by Fig. 1 in the case of one dimension. 

Ε 

FIG. 1. One-dimensional perfect lattice. 

The gaps are correct along the Ε = k2 curve, but away from Ε — k2 

the curves are incorrect. The Σ 4 and higher terms would serve to rein­
troduce the periodicity in reciprocal space. It is important to note, 
however, that even in the case of the perfect lattice the E, k diagrams 
such as that given in Fig. 1 are not extended Brillouin zone pictures. 

III. Polycrystalline Materials 

The "geometric approximation" which makes the fourth order term 
~ Σ 2 G0 Σ 2 breaks down completely in the case of a material consisting 
of randomly orientated perfect crystals. In this case 

Ν2 1 1 Γ 
<Σ e x p [ / k . ( R a - R , ) ] > = dQk 2 < 5 ( k - K ) 
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and the term which was Σ 2 G0 Σ 2 is now 

[ Ν2 1 Ί 2 1 r 

which bears no resemblance to the (Σ 2 ) 2 term. 
In this case and that of a liquid with true order, one must leave the 

angular integration (or averaging) until after the summation has been 
done. Thus one takes the local structure to have a certain fixed direction 
(the same for all parts of the liquid) and sums the series. The fixed 
direction is then averaged over. 

There is another important point which needs to be made about the 
approximation. It is easy to prove that in one dimension a system of 
(5-functions which are such that the nearest neighbor distances are 
randomly distributed between a + b and a — b can possess gaps in 
their energy spectrum. The theory discussed here is not correct in those 
gaps — it implies a small (but finite) distribution of states in the gap. 

IV. Strong Potentials 

If the lattice potentials v(r) are strong, and especially if they are strong 
enough for there to be bound states of the electrons within them, then 
it is useful to consider the /-function 

t = ν + ν G0 ν + ν G0 ν G0 ν + ... 

which sums the repeated scatterings off the potential. This function 
contains as much information as the electron propagator in the presence 
of the single potential; t, when considered as a function of energy, 
has poles at the bound state energies of ν. 

In place of G for the system, one may use Τ which is defined in an 
analogous manner to t. G and Τ are related by 

G(r, r') = G 0 (r, r') + j G 0 (r, r") Γ ( Γ " , r'") G0(r"', r') dr11 dr"'. 

Τ possesses more of the crystal symmetries than G. Then 

<G(k)> = G 0 (k) + G 0

2 (k) <r(k)> . 
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The origin of energy used to define G 0(k) is of no physical significance 
in the infinite system and corresponding to this the effect of the first 
term on the right-hand side of the equation cancels with the effect of 
G 0

2 (k) in the second. Thus 

Im <G(k)> = (E— k 2 ) " 2 Im <7\k)> . 

The expansion of Τ in terms of the va and ta is 

τ = Σ  ν α + ΣΝ« °ο Σ VP + -

α α  β 

= ΣΊ Α + Σ t a
 G °  *β  + Σ *° G<> h G<> lv - -

α αφβ  α*  β 

No two consecutive i's may have the same index. This last fact makes 
some of the integrals simpler since G 0(x) is singular at the origin in (three-
dimensional) coordinate space and if the potentials do not overlap the 
second series requires no integrations over the singular point. 

V. Kronig-Penney Model 

For a perfect lattice (with one atom per unit cell) the series (3) is 
exactly geometric. The series can now be summed in a simple manner 
for the potential v(r) = — A<5(r) in one dimension, with lattice spacing a. 
This gives, if a = N/V and Κ = 2π/α 

— σλ 
T(k)= — — — 

1 — (λ/2 V Ε) [(sin V Ε a)/(cosV Ε a —cos ka)] 

_ —λ/a 

1 +(*/*) Σ V[E-(k + nKf] 
-00 

The imaginary part is nonzero only when the denominator is zero, i.e., 

cos ka = cos Λ/ Ε a 7 = sin \ / Ε a . 

2 V Ε 
This is exactly the usual expression for the Kronig-Penney model. 
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VI. Tight-Binding Case 

When Ε < 0 the unperturbed propagator decays exponentially with 
increasing distance. This leads to an entirely different situation to the 
case when Ε > 0. This distinction does not always have a real physical 
foundation especially in the perfect lattice case. The decay of the prop­
agator for Ε < 0 means that the sums in Eq. (3) are weighted toward 
those terms involving nearest neighbors. This corresponds exactly to 
tight-binding theory where the exponential decay is provided by the 
wave functions. One is therefore able to make a consistent approxima­
tion by retaining only a certain number of nearest neighbor terms in the 
sums. In particular it is easy to obtain from the series the normal tight-
binding approximation. 

Applying the technique to a disordered system one is able to discuss 
the possibility of gaps in the energy spectrum. The series (3) may be 

Ε 

FIG. 2. Regions in which the density of states is zero. 
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approximately summed to give (formally) 

α 

The expression in the denominator will be given by a probability distribu­
tion in the case of a disordered system, but will be bounded, both above 
and below provided that the ions do not approach closer than a certain 
distance. This bounded property leads to the possibility of energy gaps 
existing in the disordered case. Thus, in one dimension, for a single level, 
the gap must stay open provided that the minimum distance of approach 
is greater than a certain value. 

The shaded region in Fig. 2 shows where the density of states is iden­
tically zero. The result holds also for a single s-level in three dimensions 
and for the region between two s-levels in three dimensions. 

VII. Three-Dimensional Problem 

Beginning with the series (3), considerable progress can be made by 
assuming that the potential around each ion is spherically symmetric, 
and that the region between these spheres is at a constant potential. 
This means that the coordinates in the /-functions on each side of any 
given G 0 do not overlap. Expanding each t in terms of a real angular 
momentum set YL(Q), enables the integrations to be carried out. This 
is because the G0 are free-space propagators in the region of constant 
potential. Thus if one defines 

GLL' = L Σ YL"(*) e x p ( - / k . R ) ^ „ ( t f ) 
L" R^O 

where R are the interatomic distances and A(R) is a product of radial 
functions with Clebsch-Gordon coefficients, the geometric approxima­
tion gives 

7\k) = (4π*) 2 YLW YLW) WIV + - tG)~* t]LL,} . 
LL' 

Here the /'s are certain transforms of the /-function. In this result the 
dependence on the positions of the ions is entirely within G, while the 
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Here St is a function related to ίχ(χ, y) and is such that 5̂ (V E) = 
tan η i. This expression enables the density of states to be calculated for 
a disordered system. It is not immediately useful in the case of a liquid 
since F involves correlation functions of high order which are not known. 

In the case of long range order Fr is a set of (5-functions and then Μ 
must be evaluated with particular care. The result is 

M'1 = π cofactor (^-^- + F^j δ (det + FR^J-

In the case of a perfect lattice this result is exact, the density of states 
being nonzero only when det [ ( λ / E/S) + FR~\ = 0. Thi sequation for 
the band structure is identical to that of Kohn and Rostoker (5). 
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dependence on the shape of the potential is entirely within t. Thus the 
two effects have been separated. These remarks do not depend on the 
nearest neighbor approximation and are equally valid for Ε > 0 or 
E<0. 

Finally one has, if 

FLL> = $LL> - iV~EdLL, = FR + iFj 
that 

^ S£k) S»(k) 
Im T(k) = (4nf £ YL(k) 7 L , (k) ^ [M]"* 

τί' 5 , ( V E) Sl,(V E) 

where 

M = + F^Fr1 (^L + F^ + Fj. 




